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Abstract

Principal Protected Absolute Return Barrier Notes (ARBNs) are structured
products linked to an underlying security or an index. While these notes guarantee
principal protection – return of face value – their upside potential is dependent on
the level of the underlying security never falling outside of a predefined range. This,
combined with the credit risk of the issuer to which all structured products are
subject, makes these products difficult to value.

In this paper we value ARBNs by decomposing the note into a zero coupon
bond and double barrier linear segment options. We derive closed form solutions
for ARBNs and their Greeks, then value 214 publicly-listed ARBNs issued by six
different investment banks between 2006 and 2009. We find that the ARBNs’ fair
price is approximately 4.5% below the actual issue price on average.

1 Introduction

Structured products are complex debt instruments whose payoffs are linked to the per-
formance of reference stocks, indices, commodity prices, interest rates, or exchange rates.
Structured products have grown in popularity in the past decade. At the same time, the
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new products offered tend to exhibit an increasing level of complexity (Hernández et al.,
2007; Henderson and Pearson, 2010), especially, by offering investors explicit or implicit
exposure to all, some, or none of the underlying security’s downside risk.

A Principal Protected Absolute Return Barrier Note (ARBN) is a structured prod-
uct that is designed to limit investor’s downside losses through its ‘principal protection’
feature. However, like all other structured products, an ARBN exposes investors to the
default risk of the issuer, and more importantly, ARBNs expose investors to the upside po-
tential of the reference security only if certain criteria are met. Therefore, like many other
structured products, the underlying value of ARBNs is not intuitive or easily calculated.

Fortunately, many papers have started exploring the characteristics and valuations
of specific types of structured products. For example, Hernández et al. (2007) and Szy-
manowska et al. (2009) all explore reverse convertibles. Reverse convertibles, one of the
most analyzed structured product classes, are products that can be converted from a debt
instrument into the underlying security at the option of the issuer. All the research on
reverse convertibles shows a substantial premium on the issue date. For example, Hen-
derson and Pearson (2010) analyze SPARQS, a type of reverse convertible that is callable
by the issuer on scheduled call dates. Like all reverse convertibles, SPARQS tend to be
issued at a premium over fair value: Henderson and Pearson (2010) find that “reasonable
estimates of the expected returns on SPARQS are less than the riskless rate. For the esti-
mates of expected returns on the underlying stocks that seem most reasonable, the average
expected return on the SPARQS is actually negative” (p. 30).

Like reverse convertibles, ARBNs have grown substantially in the past few years –
2008 saw the issuance of more than $1.6b worth. ARBNs have been sold to the public
highlighting two main features. First, their perceived principal protection. As Keith
Styrcula, the chairman of the Structured Products Association argued that “[ARBNs are]
an opportunity to get an above market return with protection. You either get everything
or nothing but your principal.”1 Second, their perceived limited exposure to volatility
risk. For example, a BusinessWeek article about ARBNs argued that “With so much
uncertainty swirling, some money managers are pushing instruments designed to limit
investors’ exposure to volatility. .... Given the way the market has been performing, just
treading water may be enough for many investors.” (Goldstein et al. (2008))

The principal protection feature guarantees the full payback of the note’s face value
as long as the investor holds the note to maturity and the issuer does not default on the
note. The interest portion of the ARBN’s payoff at maturity, however, is conditional on
the entire return path of the underlying security. If the price of the underlying security
remains within a lower and an upper barrier (L and U , respectively) for the entire life of
the note, the interest included in the payoff at maturity is equal to the absolute value of

1“Stocks: More Doldrums Ahead”, BusinessWeek, July 2, 2008.

2



the underlying security’s return. If the price of the underlying security ever crosses the
lower or upper barrier, the note does not pay interest. Figure 2(a) and Figure 2(a) graphs
the general payoff structure of an ARBN in two cases: in Panel A we describe the payoff
conditional its underlying security not having breached a barrier. In Panel B we describe
the payoff in the case that the underlying security breached a barrier at least once.

Figure 1: Payoff Structure (f(S⃗t)) of an ARBN conditional on not having breached a
barrier. L and U are the lower and upper barriers, respectively. S0 is the initial level of
the underlying security. Since the payoff structure is path dependent, we introduce the
notation S⃗t to represent the price trajectory of St over time [0, T ]. When the stock price

S⃗t remains within the barriers for its entire trajectory, the note receives positive interest.
The principal protection feature is indicated by the horizontal line below L and above U .
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The pattern of ARBNs’ conditional interest payment has similarities to double-barrier
options (Carr et al., 1998; Li, 1998; Davydov and Linetsky, 2001). Double-barrier options,
which are one of the most popular over-the-counter options (Carr and Crosby, 2008),
include both a lower barrier L and an upper barrier U . The function of the barriers
depends on whether the option is knock-in or knock-out. Knock-in double-barrier options
cannot be exercised unless the underlying security’s price crosses either of the two barriers
during the option’s contract. In contrast, similarly to ARBNs, knock-out double barrier
options lose their exercise ability if the underlying security’s price crosses either of the
two barriers. Indeed, applying the techniques used to value double barrier options gives
us a convenient way of evaluating the conditional aspect of ARBN payoffs.

We use this approach to derive a closed-form valuation of ARBNs. We apply the
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valuation to 214 ARBNs issued by six investment banks: Deutsche Bank, Goldman Sachs,
HSBC, Lehman Brothers, Morgan Stanley, and UBS. We model the price of each ARBN
at issuance, and find that the products have a 4.5% issue premium on average relative
to the price we model. The implied yield for these products is generally lower than the
issuer’s corporate yield, and in some cases, it is even lower than the risk-free rate. We
analyze and summarize the actual returns of all the matured ARBNs.

The paper is organized as follows. In Section 2 we derive the closed-form valuation
equations as well as hedging analysis. In Section 3 we value ARBNs from 6 investment
banks in the market. We conclude in Section 4.

2 Valuation and Hedging of the Notes

In this section, we describe how to value and hedge ARBNs. Section 2.1 introduces overall
assumptions in our valuations. Section 2.2 presents the valuation by decomposition via
double-barrier linear segment options (DBLS). We use DBLS options as the component
options for their simplified forms in representing the solution, i.e., the equational forms of
call and put options are unified. A method for delta hedging of ARBNs is also presented
in Section 2.3. We also analyze graphically the valuation of an ARBN and the behavior
of its Greeks: delta and gamma.

2.1 Assumptions

We use similar assumptions as in the Black-Scholes model for option valuation. We assume
the underlying security price St follows a geometric Brownian Motion

dSt = µSdt+ σSdZt, (1)

where, under the risk-neutral measure, µ is a constant drift defined as

µ = r − q.

r is the risk free rate and q is the dividend yield of the underlying security.2 σ is the
volatility of the process and Zt is a standard Brownian motion. At maturity (t = T ),
the underlying security’s price, conditioned on the underlying security’s initial price S0,
is log-normally distributed

g(ST |S0) = Log-N
(
lnS0 +

(
µ− σ2

2

)
T, σ

√
T

)
, (2)

2We assume both the risk free rate and the dividend yield are constant over time in the model.
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where g(·) denotes a probability density function.
At maturity, ARBN returns the face value to the investors. In addition, if the under-

lying security’s price remains within the barriers [L,U ] for all t ∈ [0, T ], the ARBN pays
a return equal to the absolute value of the underlying security’s return. For simplicity,
we introduce two timing variables denoting the first time the stock breaches a barrier: τL
and τU . They are defined as

τL = inf{t|St = L}
and

τU = inf{t|St = U}.
Thus, the ARBN pays a return above the face value of the note only if min(τL, τU) > T .

The ARBN payoff function, f(S⃗t), is written as

f(S⃗t) =

{
S0 + |ST−S0

S0
|, when min(τL, τU) > T ,

S0, otherwise.
(3)

f is a function of S⃗t, indicating that the payoff of the note relies on the historical prices
of the underlying security.

2.2 Valuation by Decomposition

In a general decomposition approach, the structured note’s payoff is broken down into an
equivalent portfolio of simple bond instruments, option contracts, forward contracts, and
swaps, and have a closed-form valuations.

We decompose the price of an ARBN into a zero-coupon bond and two knock-out,
double-barrier linear segment options (DBLS).3 Other decompositions are valid as well,
such as double barrier call and put options. We use DBLS as they allow for simple and
clean representation of the result. A knock-out DBLS pays a+ bST when the final equity
price ST falls inside the interval [X1, X2] and the prices S⃗t remain in the barriers, and
0 otherwise. The final payoff of a knock-out DBLS when neither barrier is breached is
shown graphically in Figure 2. Considering the same barriers L and U , the functional
form is represented as:

fDBLS(S⃗t, a, b,X1, X2) =

{
a+ bST , when min(τL, τU) > T and ST ∈ [X1, X2],
0, otherwise.

(4)

A DBLS without barriers, called a linear segment option (LS), is a generalized option
from which other options are derived as special cases. For example, a binary option is

3See Li (1998) for a more detailed discussion of double-barrier linear segment options.
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Figure 2: Payoff mapping function of DBLS with parameters (a, b,X1, X2), when the
barriers L and U are not breached.

a LS option with parameters (a, b,X1, X2) = (1, 0, X1, X2); a call option is a LS option
with parameters (a, b,X1, X2) = (−S0, 1, S0,∞); and a put option is a LS option with
parameters (a, b,X1, X2) = (S0,−1, 0, S0). The payoff function for LS option is simply

fLS(ST , a, b,X1, X2) = a+ bST , when ST ∈ [X1, X2],

which relies only on final stock price ST .
The payoff of an ARBN can be decomposed as

fARBN(S⃗t) = S0 + fDBLS(S⃗t,−S0, 1, S0, U) + fDBLS(S⃗t, S0,−1, L, S0). (5)

The equation indicates that the ARBN payoff is equivalent to a portfolio containing the
three following securities: a) 1 share of a zero-coupon bond with a face value of S0, b)
1 share of a knock-out DBLS with parameters (a, b,X1, X2) = (−S0, 1, S0, U), and c) 1
share of a knock-out DBLS with parameters (a, b,X1, X2) = (S0,−1, L, S0). Thus, the
ARBN’s fair value on issue date is derived as:

VARBN(S⃗t) = e−(r+C̄)TS0 + VDBLS(S⃗t,−S0, 1, S0, U) + VDBLS(S⃗t, S0,−1, L, S0). (6)

We include the credit default swap (CDS) spread C̄ of the issuer in the discount
factor. Including the CDS spread adjusts the valuation for the counterparty risk faced by
the investor.4

4See (Hull, 2008; Jarrow and Turnbull, 1995) on how to adjust derivative prices for counterparty credit
risk. Credit risk affects the prices of structured products. This is reflected anecdotally by the fact that
prices of Bear Stearns structured products dropped significantly in March 2008, and bounced back when
JP Morgan announced its acquisition.
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Li (1998) provides the following valuation formula for the knock-out DBLS

VDBLS(S⃗t, a, b,X1, X2) =
∞∑

n=−∞

[
VLS

(
S0

(
U

L

)2n

, a, b,X1, X2

)
−

VLS

(
U2

S0

(
U

L

)2n

, a, b,X1, X2

)(
U

S0

) 2λ
σ2

(U
L

) 2nλ
σ2

.

λ is a constant equal to r − q − σ2/2. The standard linear segment option value VLS is
given as

VLS(S0, a, b,X1, X2) = ae−(r+C̄)T
[
N
(
d
(X1)
2

)
−N

(
d
(X2)
2

)]
+

bS0e
−(q+C̄)T

[
N
(
d
(X1)
1

)
−N

(
d
(X2)
1

)]
,

where

d
(X)
1 =

log(S0/X) + (r − q + σ2

2
)T

σ
√
T

, d
(X)
2 = d

(X)
1 − σ

√
T .

Li (1998) shows that the valuation of LS option is derived as the present value of an
integration of the final payoff function given the lognormal density distribution of ST ,
g(ST |S0), see equation (2). The valuation of a DBLS option, a double barrier version
of LS, is obtained by discounting the the same integration of a payoff function fLS with
conditional density distribution of ST , given that neither barrier is breached min(τL, τU) >
T .5 The conditional density function has the form of:

ĝ(ST |S0,min(τL, τU) > T )

=
∞∑

n=−∞

g (ST

∣∣∣∣∣S0

(
U

L

)2n
)
− g

(
ST

∣∣∣∣∣
(
U2

S0

)(
U

L

)2n
)(

U

S0

) 2λ
σ2

(U
L

) 2nλ
σ2

. (7)

2.3 Analysis

In Figure 3 we show graphically the value of an ARBN as a function of its underlying
security over time. A simple ARBN is created assuming the initial stock level S0 = $100,
the same as principal. At issuance (t = 0), since we discount the future cash flows, the
value is less than par ($100). When the value of the underlying security is above the
upper barrier (U = $110) or bellow the lower barrier (L = $90), the value of the ARBN
is the discounted value of its face value ($100). The closer the ARBN is to maturity
(conditional on it not having broken any barrier until that point) the more pronounced

5This conditional density distribution is well analyzed, see for example Anderson (1960) and He et al.
(1998).
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the double hump shape of the value function. This shape is due to the double barriers.
The higher the price of the underlying security is, the higher the return, up to a point
where the price of the underlying security is close to the barrier and then the probability
it will breach the barrier is higher and hence the value of the ARBN is reduced. In order
to better understand this dynamics we compute the delta of the ARBN.

Figure 3: Fair value of ARBNs as a function of the underlying security price
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To calculate the delta of an ARBN, we use the same decomposition approach:

∆ARBN(S⃗t) = ∆DBLS(S⃗t,−S0, 1, S0, U) + ∆DBLS(S⃗t, S0,−1, L, S0). (8)

Where the delta for DBLS is calculated as

∆DBLS(S⃗t, a, b,X1, X2) =
∞∑

n=−∞

[
∆LS

(
S0

(
U

L

)2n

, a, b,X1, X2

)(
U

L

)2n

−

∆LS

(
U2

S0

(
U

L

)2n

, a, b,X1, X2

)(
U

S0

) 2λ
σ2

U2
(
U

L

)2n

+VLS

(
U2

S0

(
U

L

)2n

, a, b,X1, X2

)(
U

S0

) 2λ
σ2
(
− 2λ

σ2S0

)(U
L

) 2nλ
σ2

.
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The delta of the LS option used in the above formula is

∆LS(S0, a, b,X1, X2) = be−(q+C̄)T
[
N
(
d
(X1)
1

)
−N

(
d
(X2)
1

)]
+

e−(q+C̄)T

σ
√
T

[(
a

X1

+ b
)
N
(
d
(X1)
1

)
−
(

a

X2

+ b
)
N
(
d
(X2)
1

)]
.

Figure 4: Delta of ARBN at different times
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Figure 4 describes the delta of an ARBN, the sensitivity of the value of the ARBN to
changes in the underlying security. At the beginning of the ARBN, the delta is very close
to zero as it is far enough from maturity to not be very sensitive to the changes in the
underlying security. As the ARBN gets closer to maturity, the delta is positive when the
underlying security price is above the reference price but low enough to likely not exceed
the upper barrier. Conversely, the delta exhibits a pattern of being negative when the
underlying security price is below the reference price but high enough to likely not breach
the lower barrier. The closer the price of the underlying security is to the upper or lower
barrier the more the ARBN’s price is sensitive to changes in the underlying security price
and the.

We also derive the Gamma of an ARBN and graph it in Figure 5. As with the Delta
and the value of the ARBN, the Gamma becomes sensitive the closer we get to maturity.
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Figure 5: Gamma of ARBNs at different times
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Close to maturity, the Gamma increases as the price gets closer to S0. The Gamma
decreases and becomes negative negative as the price moves away from S0. Interestingly,
once the price is closest to the boundaries, the Gamma increases again.

3 Valuation of Real-World ARBNs

We collect data on 279 ARBNs issued from 2006 and 2009 by the main six investment
banks that issue ARBNS (Deutsche Bank, Goldman Sachs, HSBC, Lehman Brothers,
Morgan Stanley and UBS). The investment banks market their ARBNs under slightly
different names, such as ‘Absolute Return Trigger Notes’ (Goldman Saches), ‘Protected
Absolute Return Barrier Notes’ (Morgan Stanley), and ‘100% Principal Protection Abso-
lute Return Barrier Notes’ (UBS) Moreover, there are also other variations in the structure
of ARBNs. For example, autocallable ARBNs pay the principal back when the barriers are
breached rather than at maturity6, and buffered ARBNs provide a buffer against losses
but do not protect 100% of the note’s principal.

The 279 ARBNs have an aggregate face value of $4.2 billion, and are generally linked to

6See (Deng et al., 2011) on the general approach to valuing the autocallable feature structured prod-
ucts.
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indices. The primary indices used are the S&P 500 Index (63% of issues) and the Russell
2000 Index (13%) (see Table 1.) Others underlying securities include the Nasdaq 100
Index, ETFs, and exchange rates. The narrow distribution of underlying securities is in
line with Henderson and Pearson (2010)’s conclusion that issuers prefer using well-known
underlying securities.

Table 1: Distribution of ARBN Underlying Securities

Issuers S&P 500
Index

Russell 2000
Index

Other
Indices

Non-index Total

Deutsche Bank AG 60 15 8 19 102
Goldman Sachs 26 1 7 34
HSBC 3 4 1 2 10
Lehman Brothers 10 3 4 2 19
Morgan Stanley 30 12 5 47
UBS 47 15 3 2 67
Total 176 37 29 37 279

Generally speaking, ARBNs are short-term investments. Figure 6 charts the maturities
of the ARBNs in our sample. The maturities range from 6 months to 3 years, but most
maturities are between 12 and 18 months. The underwriting fees on these product range
from 1% to 2%. Underwriting fees include a fee paid to investment companies who market
the product and commissions paid to the investment advisor who sell the product to the
investor. In our sample, UBS is frequently used as the marketing agent. The issuer must
charge more than the underwriting fees plus the market value of the product in order to
make a profit.We restrict our sample to standard ARBNs for which we can collect the
necessary information, including the underlying security’s implied volatility. Our final
sample set contains 214 ARBNs.

On average, the fair value of an ARBN in our sample is 95.5% of the product’s prin-
cipal, meaning the note is issued at a 4.5% premium. In Table 2 we present the ARBNs’
fair values and implied yields by investment banks. The implied yield is defined as the
interest rate that makes the fair value equal to the issue price (at par). Morgan Stanley
tends to have a lower average price at issuance than the other issuers. This may be due to
Morgan Stanley’s high credit default swap spread, which is incorporated in the valuation
model.

Figures 7(a) to 7(c) plot the implied yield of each ARBN against the 1-year LIBOR
rate and the issuer’s 1-year bond yield equivalent.7 As the figures show, all of the ARBNs’

7For simplicity, the corporate bond yield is equivalent to sum of the LIBOR rate and the issuer’s CDS.
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Figure 6: Contract Length Distribution
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implied yields are lower than the corresponding corporate yields, and many are even lower
than the risk-free rate. We find that Lehman’s structured products generally have implied
yields below the 1-year LIBOR rate. This indicates that Lehman used structured products
including ARBNs to debt-finance its operations at sub-market rates, especially when the
company’s credit quality decreased sharply in 2007 and 2008.

In Table 3 we describe how many ARBNs from each issuer have matured and returned
a positive return. 173 of the 214 ARBNs have matured as of December 31, 2009. Of the
173 issues, 11 defaulted (all Lehman’s), 119 breached a barrier and returned the face value
to investors, and 43 paid investors a positive return. Considering all the 162 ARBNs that
have matured and did not default, the average return on the notes was 3.5%. For the 43
issues that paid a positive return, the average return was 13.4%.

4 Conclusion

In this paper we present a closed-form valuation of the standard type of Principal Pro-
tected Absolute Return Barrier Notes (ARBNs). There is a variety of approaches to
valuing ARBNs. Our approach focuses on decomposing ARBNs into a zero-coupon bonds
and linear segment options. As a by-product of the decomposition approach, we also
evaluate Greeks such as delta and gamma.
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Table 2: Fair Valuation of the ARBNs

Issuer Fair Price at Issue Time Average Implied Yield
Deutsche Bank AG 95.94% 1.31%
Goldman Sachs 95.69% 1.00%
HSBC 96.69% 1.47%
Lehman Brothers 95.06% 1.49%
Morgan Stanley 91.92% 1.11%
UBS 96.86% 1.32%
Total 95.58% 1.32%

Table 3: Actual Returns for the ARBNs

Issuers Total Matured Products Positive Returns Pay Principal
Deutsche Bank AG 68 15 53
Goldman Sachs 22 7 15
HSBC 8 2 6
Lehman Brothers 11 (defaulted) 3 (defaulted) 8 (defaulted)
Morgan Stanley 16 5 11
UBS 48 14 34
Total 173 46 127
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We apply our valuation method to a sample of 214 ARBNs and find that the ARBNs
in our sample are issued at a 4.5% premium. This premium is lower than the premia
on European reverse convertible products presented in Henderson and Pearson (2010)
but is close to the premia on U.S. dollar-denominated reverse convertibles discussed in
Hernández et al. (2007). We further conclude that investment banks may use ARBNs as
a cheap financing tool to attract investments from unsophisticated investors.
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