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Abstract

We propose a robust portfolio optimization approach based on Value-at-Risk
(VaR) adjusted Sharpe ratios. Traditional Sharpe ratio estimates using a limited
series of historical returns are subject to estimation errors. Portfolio optimization
based on traditional Sharpe ratios ignores this uncertainty and, as a result, is not
robust. In this paper, we propose a robust portfolio optimization model that selects
the portfolio with the largest worse-case-scenario Sharpe ratio within a given confi-
dence interval. We show that this framework is equivalent to maximizing the Sharpe
ratio reduced by a quantity proportional to the standard deviation in the Sharpe
ratio estimator. We highlight the relationship between the VaR-adjusted Sharpe
ratios and other modified Sharpe ratios proposed in the literature. In addition, we
present both numerical and empirical results comparing optimal portfolios gener-
ated by the approach advocated here with those generated by both the traditional
and the alternative optimization approaches.

Keywords: Sharpe Ratio, Portfolio Optimization, Robust Optimization, VAR

1 Introduction

In Markowitz’s mean-variance framework, optimal portfolios have minimum variance
given an expected return, or equivalently maximum expected return given a variance.
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With the ability to borrow and lend at the risk-free rate, the separation property (Bodie
et al., 2010) states that the optimal mean-variance portfolio of risky assets is the portfolio
with the highest Sharpe ratio, defined as the ratio of the expected excess return to the
standard deviation of excess returns. This ratio measures the excess return a portfolio is
expected to gain for each unit of risk (or volatility) associated with this excess return.

Practitioners observe a set of excess returns and compute the Sharpe ratio by dividing
the sample mean by the sample standard deviation. This procedure is subject to estima-
tion errors including data limitations, negative skewness and positive excess kurtosis of
returns. In addition, the ex-post Sharpe ratio implicitly assumes that the returns of the
asset under consideration are independent and identically distributed (i.i.d) normal ran-
dom variables. However, these assumptions are violated by real world financial data. For
example, hedge fund return distributions are often negatively skewed and exhibit positive
excess kurtosis. Furthermore, the presence of measurable and statistically significant se-
rial autocorrelations indicates that the returns are not independent and heteroskedasticity
provides evidence against the identicality of serial returns. The Sharp ratio estimation
errors lead to potentially misleading results when the traditional Sharpe ratio is used to
determine the optimal portfolio. These observations call into question the appropriateness
of using the Sharpe ratio in portfolio allocation decisions.

This paper proposes a robust optimal portfolio allocation approach using a modified
version of the traditional Sharpe ratio that we refer to as the “Value-at-Risk (VaR) ad-
justed Sharpe ratio” (VaRSR). The VaRSR explicitly takes into account the uncertainty
involved in estimating the Sharpe ratio, and takes a more conservative view than the
traditional Sharpe ratio by including the effects of higher order moments of the return
distribution. The approach is specially adapted to assets with non-normal return distri-
butions and limited data. We show that the portfolio allocation approach naturally fits
into a max-min robust optimization framework and, as a result, is more reliable than
traditional portfolio optimization using Sharpe ratios.

Value-at-Risk (VaR) is widely used in risk management. When applied to a return dis-
tribution, VaR estimates the maximum loss on an investment with a prescribed confidence
level. In this paper, we apply VaR to the Sharpe ratio by examining the lowest Sharpe
ratio consistent with the data in the observation period for a given confidence level. In
other words, we use the lower bound of an estimated confidence interval for a Sharpe ratio,
instead of the estimated Sharpe ratio itself. By doing so, we limit the probability that
the underlying Sharpe ratio estimated using the historical returns is substantially smaller
than the measured Sharpe ratio. Intuitively this means portfolio managers should choose
portfolios with relatively large estimated Sharpe ratios with a penalty for the uncertainty
in such estimated ratios.

Our VaRSR measure contrasts with another alternative to the Sharpe ratio, the “prob-
abilistic Sharpe ratio” (PSR), proposed by Bailey and López de Prado (2011). Using an
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estimated distribution of the Sharpe ratio, the PSR computes the probability that a
Sharpe ratio estimate exceeds a prescribed threshold. Bailey and López de Prado (2011)
also introduce the concept of a “Sharpe ratio efficient frontier” which contains combina-
tions of the estimated Sharpe ratio and the standard error of the Sharpe ratio estimate.
This is analogous to the traditional efficient frontier which relates the expected excess
return to the standard deviation of excess returns. Later we will show that solutions to
the traditional Sharpe ratio optimization model, our VaRSR model and the PSR model
are all located on the Sharpe ratio efficient frontier. The traditional portfolio optimization
approach and the PSR approach are special cases of the more general approach presented
here.

We test the effectiveness of our VaRSR approach with a numerical example involving
a simple three-asset portfolio and simulated returns. We perform the test on a portfolio
consisting of allocations to ten Dow Jones Credit Suisse Hedge Fund Indexes to show the
benefits investors could realize by implementing our approach. In particular, we provide
evidence that this strategy is effective in mitigating market volatility and volatility of the
Sharpe ratio estimator without sacrificing realized returns. In each example, we compare
our computed robust portfolio with the traditional and alternative robust Sharpe ratio
portfolios.

The sections of the paper are arranged as follows. We begin with a review of the rel-
evant literature in Section 2. In Section 3, we then include a discussion of the statistical
properties that Sharpe ratio estimators inherit from the underlying return distribution.
This section provides the distribution formulas for the Sharpe ratio estimates and provides
a theoretical foundation for the VaRSR measure. In Section 4, we give a detailed intro-
duction of our new measure and compare the measure to alternative approaches present
in the literature. Section 5 discusses the details of our tests including simulations and the
hedge fund portfolio. The final section is reserved for our conclusions.

2 Existing Literature

This paper stands at the intersection of two strands of literature. On the one hand, it
is closely related to the discussion of non-normal return distributions and of data limita-
tions in Sharpe ratio measurements. On the other hand, it naturally fits into the robust
optimization framework.

Hodges (1998) and Zakamouline and Koekebakker (2009) define a “Generalized Sharpe
Ratio” that takes into account the skewness (third moment) and kurtosis (fourth moment)
of the observed historical return distribution. Lo (2002) derives the statistical behavior
of observed Sharpe ratios under the assumption that returns are normally distributed.
Mertens (2002) extends Lo’s result by relaxing the normality assumption. Christie (2005)
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and Opdyke (2007) further relax the assumption of i.i.d. returns to include stationary
and ergodic returns. Christie and Opdyke have shown that the Sharpe ratio estimator is
asymptotically normally distributed even when the underlying returns are serially corre-
lated or have time-varying conditional volatilities. These results make the construction
of a VaRSR straightforward.

The portfolio selection problem using the VaRSR also presents an example of a robust
portfolio optimization problem. Robust portfolio optimization incorporates the certainty
with which the moments of the underlying return distribution are estimated from historical
returns. Goldfarb and Iyengar (2003) define the concept of “uncertainty structures” for
the estimates of expected returns and variances and show how to efficiently compute
robust portfolio allocations with a desired level of confidence. Maximizing the worst-case
Sharpe ratio is one of the robust portfolio optimization models presented in Goldfarb
and Iyengar (2003). Tütüncü and Koenig (2004) generalize this approach and advocate
the conservative portfolio selection program that maximizes the portfolios’ returns in
the worst-case scenario. These authors typically model the uncertainty sets of input
parameters in return construction or use separate uncertainty sets for the distribution
of mean and variance estimators, while our approach uses the uncertainty set of Sharpe
ratio estimators directly. Our approach is motivated by the observation that Sharpe ratio
estimators are approximately normally distributed even when asset returns are not. In
addition, modeling the Sharpe ratio directly allows us to incorporate skewness and kurtosis
information and avoids several key assumptions about the underlying return distribution.

More recently, Zymler et al. (2011) add a portfolio insurance guarantee to optimal
portfolios using derivatives to the standard robust portfolio optimization framework as a
hedge against catastrophic market events. Instead of using a worst-case scenario approach,
DeMiguel and Nogales (2009) use robust estimators, M-estimator and S-estimator, and
show their out-of-sample properties. For a recent survey of the contributions of the field
of operations research to robust portfolio selection, see Fabozzi et al. (2010). Bertsimas
et al. (2011) provide a broad overview of the robust optimization literature, while Ben-Tal
and Nemirovski (2007) summarize the status of robust convex optimization in particular.

3 Statistical Properties of Sharpe Ratio Estimators

In this section, we lay out the groundwork for the construction of the VaRSR. We follow
Lo (2002) and Mertens (2002) in modeling the distribution of the Sharpe ratio, which
is necessary to derive the VaRSR. The Sharpe ratio (SR) of a return distribution is
conventionally defined as the ratio of the expected excess return over the risk-free rate
(µ) to the standard deviation of the excess returns (σ):

SR =
µ

σ
. (1)
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Generally speaking, µ and σ are unobservable and have to be estimated from histor-
ical data. Given a sample of historical returns {R1, R2, . . . , Rn} and risk-free rates
{Rf1, Rf2, . . . , Rfn}, the estimated Sharpe ratio is

ŜR =
µ̂

σ̂
(2)

where

µ̂ =
1

n

n∑
i=1

(Ri −Rfi) and σ̂2 =
1

n− 1

n∑
i=1

(Ri −Rfi − µ̂)2. (3)

We begin with the derivation of the distribution of Sharpe ratio estimators assuming
i.i.d. normal returns. Assuming that the investment returns {R1, R2, . . . , Rn} are i.i.d
normal with finite mean µ and variance σ2, Lo (2002) shows that the following relation
holds as a result of the Central Limit Theorem:

√
n

((
µ̂
σ̂2

)
−
(

µ
σ2

))
⇒ N

(
0,

(
σ2 0
0 2σ4

))
(4)

This implies that the variance in the estimators µ̂ and σ̂2 take the following asymptotic
forms,

Var (µ̂) =
σ2

n
and Var

(
σ̂2
)

=
2σ4

n
(5)

and therefore the sampling error of these estimators decreases with increasing sample size.
Using Taylor’s theorem, for a general function g(µ, σ2),

√
n
(
g(µ̂, σ̂2)− g(µ, σ2)

)
⇒ N

(
0, σ2

(
∂g

∂µ

)2

+ 2σ4

(
∂g

∂σ2

)2
)
. (6)

If g(µ, σ2) = µ
σ
, then

√
n

(
µ̂

σ̂
− µ

σ

)
⇒ N

(
0, 1 +

1

2

(µ
σ

)2
)
. (7)

As a result, the standard deviation in the estimated Sharpe ratio is then given by

σ(ŜR) =

√
1

n

(
1 +

1

2
SR2

)
. (8)

After Bessel’s correction the estimated standard deviation of ŜR is given by

σ̂(ŜR) =

√
1

n− 1

(
1 +

1

2
ŜR

2
)
. (9)
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Both the unobserved population mean µ and population variance σ2 contribute to the
standard deviation of the Sharpe ratio estimator.

Mertens (2002) shows that the asymptotic distribution of Sharpe ratio estimators for
returns drawn from a distribution with finite mean µ, variance σ2, skewness γ3, and
kurtosis γ4 is

√
n

(
µ

σ
− µ̂

σ̂

)
⇒ N(0, V ) (10)

where

V = 1 +
1

2

(µ
σ

)2

−
(µ
σ

)
γ3 +

(µ
σ

)2
(
γ4 − 3

4

)
. (11)

The standard deviation of the Sharpe ratio estimator is then estimated by1

σ̂(ŜR) =

√
1

n− 1

(
1 +

1

2
ŜR

2
− ŜRγ̂3 + ŜR

2
(
γ̂4 − 3

4

))
. (12)

Comparing Equation (12) to Equation (9) identifies the effect skewness and excess kur-
tosis have on the errors in the estimation of Sharpe ratios. Return distributions that
exhibit negative skewness (γ̂3 < 0) and positive excess kurtosis (γ̂4 > 3) lead to greater
uncertainty in the estimation of the Sharpe ratio than a normal return distribution with
the same mean and variance. Given that some assets – such as hedge funds – often exhibit
return distributions that are negatively skewed and leptokurtic, it is important to model
the variance in the Sharpe ratio estimator explicitly.

4 VaR-Adjusted Sharpe Ratios

4.1 Definitions

We consider portfolios consisting of k securities, with each portfolio completely charac-
terized by weights w ∈ [lw, uw]k, where wi is the percentage of the total portfolio value
invested in security i ∈ {1, 2, . . . , k}. Each wi has a lower bound lw and an upper bound
uw > lw and the sum of wi is 1.2 Choosing the optimal portfolio using the Sharpe ratio
as the objective is equivalent to solving

max
w∈Rk

{
SR(w)

∣∣wT1 = 1, lw ≤ wi ≤ uw
}
. (13)

1 Although the underlying return distribution is not normal, the distribution of Sharpe ratio estimators
follows an asymptotically normal distribution.

2 If there exists short-selling constraints on the n securities, lw is 0 and uw is 1. Relaxing such constraints
allows for lw < 0 and uw > 1.
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In practice, the Sharpe ratio estimator, ŜR(w), is used in place of the unobservable
quantity SR(w).

Since the Sharpe ratio estimator based on the estimated mean and variance in asset
returns are subject to significant estimation error, the portfolio weights which maximize
the Sharpe ratio estimator are unlikely to maximize the true Sharpe ratio. To mitigate
such estimation errors, we introduce a risk-adjusted Sharpe ratio ŜR − γσ̂(ŜR) as the

“VaR-adjusted Sharpe ratio” (VaRSR), denoted as ŜRV aR(γ). Here ŜR is the Sharpe

ratio estimator, σ̂(ŜR) is its standard deviation, and parameter γ is determined by the

confidence level of the VaR estimate. The VaRSR or ŜRV aR(γ), is used as the new objec-
tive function for the portfolio allocation problem.3 Contrasting the traditional formulation
in Equation (13), our main portfolio optimization problem becomes

max
w∈Rk

{
ŜRV aR(γ)

∣∣∣wT1 = 1, lw ≤ wi ≤ uw

}
. (14)

We now show that the formulation fits into a standard robust portfolio optimization
framework, which is essentially a max-min problem:

max
w∈Rk

{
min

SR∈ΘSR(w)

SR(w)

∣∣∣∣wT1 = 1, lw ≤ wi ≤ uw

}
. (15)

ΘSR(w) is an uncertainty set containing the unknown true Sharpe ratio SR(w). The
inner-minimization problem minSR∈ΘSR(w)

SR(w) computes the minimum possible value

of SR(w) for each given w in the uncertainty set ΘSR(w), and identifies the portfolio with
the largest worst-case Sharpe ratio.

To specify the uncertainty set ΘSR(w) that establishes the equivalence of Equation
(14) and Equation (15), recall from Section 3 that SR is a normal random variable with

a distribution N
(
ŜR, σ̂2(ŜR)

)
in the limit of large sample sizes and under quite general

assumptions – namely stationarity and ergodicity.4 Following Zymler et al. (2011), the
set ΘSR could be an ellipse with exogenous parameter γ

ΘSR = {(SR− ŜR)(σ̂2(ŜR))−1(SR− ŜR) ≤ γ2}. (16)

3 VaRSR serves as a risk-adjusted Sharpe ratio. The level of VaRSR is strictly less than the Sharpe ratio.
Occationally, we may observe that VaRSR is negative while the Sharpe ratio is positive, especially when
the risk-adjustment component is large.

4 The accuracy of the Sharpe ratio standard deviation estimator increases as the sample size increases.
Empirical studies show that the normality result of the Central Limit Theorem is generally a good
approximation for sample sizes greater than thirty (Hogg and Tanis, 2009). For a more in-depth
discussion concerning the convergence in the limit of large sample sizes, see Greene (2002).
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In a one-dimensional setting, the uncertainty set is the interval

ΘSR =

{∣∣∣∣∣SR− ŜRσ̂(ŜR)

∣∣∣∣∣ ≤ γ

}
. (17)

Therefore, the solution to the inner-minimization problem is exactly ŜRV aR(γ) = ŜR −
γσ̂(ŜR).

Figure 1: The Sharpe Ratio Estimator ŜR, the VaR-Adjusted Sharpe Ratio
VaRSR (ŜRV aR), and the Uncertainty Set ΘSR.

An illustration of the risk-adjusted Sharpe ratio measure ŜRV aR and the uncertainty
set ΘSR is depicted in Figure 1. SR is a normally distributed random variable with

a distribution N
(
ŜR, σ̂2(ŜR)

)
. For a given probability α (such as 5%), ŜRV aR(γ) =

ŜR−γσ̂(ŜR) defines a lower threshold value such that the likelihood that SR falls below
this threshold value is less than or equal to α

2

Prob
(
SR ≤ ŜRV aR(γ)

)
=
α

2
. (18)

The range
[
ŜR− γσ̂(ŜR), ŜR + γσ̂(ŜR)

]
defines a (1 − α) confidence interval for the

unobservable quantity SR. Here the parameter γ has a one-to-one correspondence to a
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Z value Zα
2
, given by

1− α = P (SR ∈ ΘSR) = P

(∣∣∣∣∣SR− ŜRσ̂(ŜR)

∣∣∣∣∣ ≤ γ

)
= P (|Z| ≤ γ), (19)

where Z is a standard normal random variable.
The parameter γ controls the size of the uncertainty set ΘSR. Tradeoffs exist in

choosing the appropriate value of γ. On the one hand, a large γ penalizes the estimated
Sharpe ratio for remote events, providing a more conservative estimate. On the other
hand, if γ is too large, the resulting portfolio might be too conservative.

For a given γ, ŜRV aR increases with ŜR, the number of sample points n, the skewness
estimator γ̂3, and decreases with the kurtosis estimator γ̂4. Later we will show that this
estimator ŜRV aR is more robust than the simple Sharpe ratio estimator ŜR and that
when the return distribution is non-normal the optimal portfolio based on Value-at-Risk
Sharpe ratio and the simple Sharpe ratio can be quite different.

4.2 Comparison to Other Measures

Here we explore the differences as well as the connections between the VaRSR (ŜRV aR)
and the “probabilistic Sharpe ratio” (PSR) suggested in Bailey and López de Prado
(2011). Although the two approaches are closely related, the two measures differ in how
they incorporate uncertainty in Sharpe ratio estimation.

Bailey and López de Prado (2011) define the PSR as the probability that the estimated
Sharpe ratio exceeds a benchmark Sharpe ratio (SR∗)

f(ŜR(w, SR∗)) := P̂SR(SR∗) = Prob(ŜR ≥ SR∗) = 1−
∫ SR∗

−∞
pdf(ŜR)dŜR. (20)

Applying the result that ŜR is normally distributed, we have

P̂SR(SR∗) = Φ

[
(ŜR− SR∗)

√
n− 1

σ̂(ŜR)

]
(21)

where Φ is the cumulative distribution function (CDF) for the standard normal distribu-

tion. A P̂SR(SR∗) ≥ 95% indicates that the estimated Sharpe ratio is greater than the
benchmark Sharpe ratio at a 95% confidence level.

Our approach contrasts with the PSR approach in a number of ways. The VaRSR is
motivated by robust portfolio selection with max-min optimization and the PSR is not.
The VaRSR (ŜRV aR) computes an adjusted Sharpe ratio based on a prescribed threshold
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in probability, while the P̂SR computes probability based on a prescribed threshold in
Sharpe ratio. Although the two concepts are closely related, our approach is perhaps
more intuitive than that of the PSR.

Figure 2: The Probabilistic Sharpe Ratio P̂SR(SR∗).

Figure 2 graphically depicts the probabilistic Sharpe ratio P̂SR(SR∗). The PSR ap-
proach selects portfolio weights such that the optimal portfolio’s Sharpe ratio distribution
has the greatest probability mass in excess of a threshold Sharpe ratio. As illustrated in
Figure 1, the traditional optimization framework selects the portfolio weights that maxi-
mizes the estimated Sharpe ratio, ŜR while the VaRSR approach selects portfolio weights
that maximize the lower bound ŜRV aR given a confidence level based on the resulting
portfolio’s estimated Sharpe ratio ŜR.

To further illustrate the relationship between the PSR and VaRSR, it is helpful to de-
fine the “Sharpe ratio efficient frontier” (SEF) first proposed by Bailey and López de Prado
(2011). In Markowitz (1952), the mean-variance efficient frontier is defined as the set of
portfolios which have the largest expected excess return for a given variance of excess
returns. In a similar fashion, Bailey and López de Prado (2011) define the Sharpe ra-
tio efficient frontier as the set of portfolios that deliver the greatest Sharpe ratio for a
given level of estimation uncertainty. For a given level of uncertainty σ∗, the Sharpe ratio
efficient frontier is given by

SEF(σ∗) = max
σ̂(ŜR(w))=σ∗

ŜR(w). (22)
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The Sharpe ratio efficient frontier is shown in Figure 3. Each possible portfolio is a
data-point on or below the efficient frontier curve. Since the CDF function in Equation

(21) is monotonically increasing, maximizing P̂SR is equivalent to maximizing the argu-
ment of the CDF function. In Figure 3, the solutions to the PSR problem are located on
the Sharpe ratio efficient frontier where the tangent line intersects the y-axis at SR∗.

Figure 3: PSR Solutions on the Sharpe Ratio Efficient Frontier.

Maximizing the VaRSR for a given probability α is equivalent to finding the tangent
line to the Sharpe ratio efficient frontier that has slope γ. See Figure 4 for an illustration.
Since the maximum of the Sharpe ratio efficient frontier occurs when the tangent line is
zero, the maximum VaRSR is achieved with the optimal portfolio when γ is zero. In that
case the VaRSR is the same as the maximum ŜR which ignores the uncertainty in the
measurement of the Sharpe ratio.
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Figure 4: ŜRV aR Solution on the Sharpe Ratio Efficient Frontier.

The solution to the VaR optimization problem for a given γ is the same as the so-
lution to the PSR optimization problem with SR∗ = ŜRV aR − γσ̂(ŜR). As a result,
there is a correspondence between the solutions to the VaR portfolio optimization advo-
cated here and the PSR portfolio optimization introduced by Bailey and López de Prado
(2011). Our approach would suggest choosing a higher γ to more strongly penalize mea-
surement uncertainties. Perhaps counterintuitively, this correspondence suggests that a
lower benchmark SR∗ should be chosen in this case.

5 Numerical Results

5.1 Simulation Results

We first test our model with simulated stock prices. Consider a simple portfolio with
three uncorrelated assets and a constant risk-free rate Rf = 0.01. We assume that the
underlying excess return distribution for each asset is described by the first four central
moments given in Table 1.
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Table 1: First Four Central Moments of the Simulated Excess Return
Distribution for Three Assets.

Mean (µ) Volatility (σ) Skewness (γ3) Kurtosis (γ4)
Asset 1 0.10 0.20 1.00 3.00
Asset 2 0.15 0.30 0.00 7.00
Asset 3 0.20 0.36 -2.5 10.0

For each security, five years of monthly returns are simulated, resulting in a total of
60 data points. The simulation of stock returns is accomplished in MATLAB with the
Pearson system distribution.5 The Pearson distribution facilitates a simple simulation
of asset returns when the underlying return distribution exhibits non-zero skewness or
excess kurtosis. This simulated data resembles the data typically used by a hedge fund
or portfolio manager to compute a five-year Sharpe ratio.

We computed the optimal allocation of portfolio value to the three assets in the tradi-
tional approach, the VaRSR approach and the PSR approach (SR∗ = 0). The optimiza-
tion model based on the VaRSR is implemented in MATLAB. We use the optimization
routine fmincon to solve the problem without specifying the gradient or the Hessian ma-
trix for the objective function.6 We choose our threshold parameter γ to be 1.96, which
corresponds to the significance level of 5%. The resulting portfolio weights are summarized
in Table 2.

Table 2: Optimal Portfolio Allocations for Each Optimization Approach.

w∗SR w∗PSR w∗V aR
Asset 1 43.32% 64.74% 52.69%
Asset 2 13.35% 8.56% 13.24
Asset 3 43.33% 26.70% 34.08%

The traditional portfolio allocation resulting from maximizing the Sharpe ratio yields
portfolio weights given by w∗SR = [43.32%, 13.35%, 43.33%] and has the highest possible
Sharpe ratio 0.6731, but also a high standard deviation – 0.1920. The Sharpe ratio for the

5 For more details please refer to the MATLAB function pearsrnd.
6 We do not explicitly convert our model into a second-order cone program as many papers in robust

optimization do because our inner minimization problem is relatively simple to solve even without this
conversion.
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weight vector that maximizes the VaRSR is w∗V aR = [52.69%, 13.24%, 34.08%] is 0.6535
and has a standard deviation of 0.1441.

Table 3 summarizes the optimization results.

Table 3: Estimated Sharpe Ratio, Standard Error of Estimated Sharpe Ratio
and Worst Case Sharpe Ratio for Optimal Portfolio Allocations in Each of the

Three Optimization Approaches.

Statistic w = w∗SR w = w∗PSR w = w∗V aR
µ̂(w) 0.0281 0.0246 0.0265
σ̂(w) 0.0418 0.0419 0.0406

ŜR(w) 0.6731 0.5875 0.6535

σ̂(ŜR)(w) 0.1920 0.1150 0.1441

ŜR(w)− γσ̂(ŜR)(w) 0.2968 0.3621 0.3711

In comparison to the traditional approach, VaRSR reduces the Sharpe ratio standard
deviation by 25% while reducing the measured Sharpe ratio by only 3%. The 2-standard
deviation lower bound on the traditional Sharpe ratio is 0.2968 and on the VaRSR is
0.3711 – an increase of more than 25%.

Since the return distribution of Asset 3 is negatively skewed, the VaRSR optimization
algorithm penalizes weight on that asset. Compared to the traditional portfolio weights
w∗SR, the maximum VaRSR portfolio shifts weight from Asset 3 to Asset 1. The excess
kurtosis alters the portfolio optimization algorithm relative to the traditional approach
at a higher order due to the excess kurtosis’ quadratic coefficient in Equation (12). The
weight on Asset 2 remains virtually unchanged between the conventional Sharpe ratio
optimization and the VaRSR optimization in this example.

As the number of securities in the portfolio increases, the likelihood that the traditional
and VaRSR portfolios will have similar weight vectors decreases. Among the optimization
portfolios considered, the PSR approach with the threshold value SR∗ = 0 yields the
lowest Sharpe ratio as well as the lowest Sharpe ratio standard error, resulting from a
greater penalty on the uncertainty surrounding ŜR.

In Figure 5(a) we plot the Sharpe ratio efficient frontier. The red points represent
portfolios with weights wi = j/100 for j ∈ {0, 1, . . . , 100}. The possible 5151 portfolios
span the space of feasible weights defined by lw = 0 ≤ wi ≤ uw = 1 respecting the
portfolio constraint wT1 = 1. All possible portfolios reside on or below the Sharpe ratio
efficient frontier.

The portfolio with the highest Sharpe ratio is denoted with a triangle, the portfolio
calculated by maximizing the VaRSR is denoted with a star and the portfolio following
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the PSR approach is denoted with a square. The standard deviation of the highest Sharpe
ratio portfolio is too large for the portfolio to be considered optimal in our model. We
plot the Sharpe ratio efficient frontier in a light grey curve. The γ → 0 limit of model
coincides with the traditional Sharpe ratio optimization model.7

Figure 5: Portfolios Formed from Three Independent Assets with Mean Excess
Returns of [0.10, 0.15, 0.20] and Volatilities [0.2, 0.3, 0.36].
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7 For a given value of γ, the optimal portfolio is point on the Sharpe ratio efficient frontier with derivative
equal to γ. As a result, varying the parameter γ and determining the optimal portfolio will provide
the set of portfolios that comprise the Sharpe ratio efficient frontier.
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Figure 5(b) depicts the portfolios on a mean-variance graph (based on excess returns)
as well as the efficient frontier of returns. Unlike the portfolio w∗SR, the portfolios w∗V aR
and w∗PSR are not located on the mean-variance efficient frontier. This is not surprising
since the mean-variance frontier only incorporates the information for the first two mo-
ments of the observed return distribution (mean and variance), while the portfolios w∗V aR
and w∗PSR are optimally derived with higher moment information.

Robustness Test As we increase the significance parameter γ, the confidence interval
widens. Following Goldfarb and Iyengar (2003), in Figure 6 we plot the Sharpe ratio
with weights w∗SR and the worst-case Sharpe ratio with weights w∗V aR as a function of
the parameter γ. The blue lines are for the Sharpe ratios and the red lines are for the
worst-case Sharpe ratios.

Figure 6: Change of Sharpe Ratios with Varying γ.
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Figure 6 shows that as γ increases, the portfolio becomes more conservative and as a
result exhibits a lower Sharpe ratio. Figure 6 also shows the dramatic alteration of the
worst-case Sharpe ratio. Our approach drastically increases the worst-case Sharpe ratio
but only slightly decreases the mean Sharpe ratio from that of the traditional portfolio
optimization approach.
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5.2 Empirical Results

As an empirical example of our framework, we determine the optimal allocation for port-
folios constructed from 10 Dow Jones Credit Suisse Hedge Fund Indexes from January
1996 to December 2011.8 We use hedge fund indexes because these funds typically ex-
hibit negative skewness and positive excess kurtosis. As a result, the probability that
the estimated Sharpe ratio for such investments accurately reflects the true underlying
Sharpe ratio is smaller than that of an analogous asset with normally distributed returns
and identical mean and variance (Bailey and López de Prado, 2011). Table 4 summa-
rizes the hedge fund strategies and first four central moments of their historical return
distributions.9

Table 4: Dow Jones Credit Suisse Hedge Fund Indexes: Moments of the Return
Distribution Reflect Historical Monthly Excess Returns Observed from January

1996 to December 2011.

# Strategies
Mean Standard Skewness Kurtosis

ŜR σ̂(ŜR)
(µ) Deviation (σ) (γ3) (γ4)

1 Convertible Arbitrage 0.38% 2.09% -2.66 18.39 0.183 0.092
2 Dedicated Short Bias -0.51% 5.02% 0.67 4.30 -0.102 0.075
3 Emerging Markets 0.50% 4.06% -1.31 9.70 0.123 0.079
4 Equity Market Neutral 0.20% 3.15% -11.34 148.57 0.065 0.099
5 Event Driven 0.47% 1.89% -2.31 13.78 0.249 0.096
6 Fixed Income Arbitrage 0.15% 1.76% -4.16 30.04 0.085 0.086
7 Global Macro 0.72% 2.75% -0.31 7.24 0.263 0.079
8 Long/Short Equity 0.52% 2.94% -0.10 6.13 0.178 0.074
9 Managed Futures 0.30% 3.37% 0.074 2.62 0.089 0.072
10 Multi-Strategy 0.39% 1.50% -1.90 10.64 0.257 0.093

In Figure 7, we show the value of a January 1996 initial investment of $100 in each of
the Dow Jones Credit Suisse Hedge Fund Indexes over time. While some of the indexes
were significantly affected by this financial crisis in late 2008 (e.g. Equity Market Neutral),
others emerged from the crisis relatively unscathed (e.g. Managed Futures).

8 For details, please see http://www.hedgeindex.com/. As a proxy for the risk-free rate of interest, we
use one month LIBOR rates.

9 In Section 5.1, we assumed the assets are uncorrelated. In this section, we implicitly use the historically
accurate correlations between the various hedge fund indexes.
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Figure 7: Value of a Hypothetical January 1996 Initial Investment of $100 in
Each of the Dow Jones Credit Suisse Hedge Fund Indexes

$0

$100

$200

$300

$400

$500

$600

$700
Convertible Arbitrage

Dedicated Short Bias

Emerging Markets

Equity Market Neutral

Event Driven

Fixed Income Arbitrage

Global Macro

Long/Short Equity

Managed Futures

Multi-Strategy

Table 5 presents the optimal weights obtained by maximizing the VaRSR and the
traditional Sharpe ratio. Weights on indexes not listed in Table 5 are zero for the opti-
mization approaches considered therein.
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Table 5: Optimal Portfolio Allocation Given Historical Monthly Returns of the
Dow Jones Credit Suisse Hedge Fund Indexes. γ = 0 Corresponds to the

Traditional Portfolio Optimization.

Index w∗V aR given γ (Probability α/2)
# 0 1.282 (90%) 1.645 (95%) 1.960 (97.5%) 2.326 (99%) 3.090 (99.9%) w∗PSR
2 2.7% 0 0 0 0 0 0
4 0 0 0 0 0 0.8% 1.6%
5 26.7% 28.3% 29.7% 30.3% 30.7% 31.4% 31.7%
7 26.6% 29.8% 30.3% 30.7% 30.9% 31.8% 32.8%
9 3.9% 9.3% 10.7% 11.9% 13.3% 15.6% 17.6%
10 40.3% 32.6% 29.4% 27.1% 25.1% 20.5% 16.2%

At first our results may seem counterintuitive since the VaRSR portfolios do not increase
the weight on the index with the highest skewness and a low kurtosis - the Dedicated
Short Bias Index. On the other hand, the measured Sharpe ratio is negative and as a
result the positive skewness increases the standard deviation of the Sharpe ratio estimator
– see Equation (12).10

The traditional portfolio optimization approach allocates over 40% of the portfolio to
the Multi-Strategy index and essentially splits the remainder evenly between the Event
Driven index and the Global Macro index. Although the more conservative (larger γ)
optimal portfolios have larger allocations to a similar subset of indexes, the Event Driven
and Global Macro indexes each have larger weight than the Multi-Strategy index. Again,
the PSR approach with SR∗ = 0 represents a more conservative approach with a higher
penalty on the uncertainty of the estimated Sharpe ratio. Setting SR∗ = 0 corresponds
to our approach with γ = 5.91.

In Table 6, we summarize the Sharpe ratio, the Sharpe ratio standard error and
the worst-case Sharpe ratio for the traditional Sharpe ratio optimization, the VaRSR
optimization (γ = 1.96) and the PSR optimization (SR∗ = 0). Although the mean
Sharpe ratio is larger for the traditional approach, the worst-case Sharpe ratio is lower
than both the PSR optimization and the VaRSR optimization with the latter being the
highest.

10 It is, in principle, possible that the optimization procedure advocated here would have non-zero weight
on an asset with a negative mean excess return if such an allocation would have diversification benefits
to sufficiently alter the return distribution to increase the VaRSR.
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Table 6: Estimated Sharpe Ratio, Standard Error of Estimated Sharpe Ratio
and Worst Case Sharpe Ratio for Optimal Portfolio Allocations for Portfolio

Allocation to the Dow Jones Credit Suisse Hedge Fund Indexes.

Statistic w = w∗SR w = w∗PSR w = w∗V aR
µ̂(w) 0.0047 0.0051 0.0051
σ̂(w) 0.0144 0.0165 0.0158

ŜR(w) 0.3286 0.3068 0.3205

σ̂(ŜR)(w) 0.0904 0.0763 0.0811

ŜR(w)− γσ̂(ŜR)(w) 0.1514 0.1572 0.1615

6 Conclusion

In this paper, we proposed a robust alternative to the traditional portfolio optimization
problem using the concept of Value-at-Risk (VaR). Our approach is motivated by the
observation that even if asset returns exhibit higher moments which are inconsistent with
the normal distribution, the distribution of Sharpe ratio estimators follows is normally
distributed. We call this new measure “VaR-adjusted Sharpe ratio” (VaRSR). The ap-
proach advocated here is a natural generalization to the standard portfolio optimization
and intuitively connects to other alternatives proposed in the literature.

An ancillary benefit of the approach taken here is that it incorporates the higher order
central moments of a portfolio’s excess return distributions. Although the standard port-
folio optimization approach would allocate equal portion of a portfolio to two uncorrelated
assets with the same mean, standard deviation, kurtosis but opposite skewness, the op-
timal portfolio based on the VaRSR has a larger investment in the asset with positively
skewed excess returns.

We showed that this alternative measure limits the probability that the underlying
Sharpe ratio estimated using the historical returns is substantially smaller than the com-
puted Sharpe ratio. Furthermore, solutions to the traditional Sharpe ratio optimization
model, our VaRSR model and the probabilistic Sharpe ratio model are all located on
the Sharpe ratio efficient frontier introduced by Bailey and López de Prado (2011). The
Sharpe ratio efficient frontier exhibits a second level of optimality beyond the mean-
variance efficient frontier, which only uses information in the first two moments of re-
turns. While the optimal portfolio in our framework is slightly shifted away from the
mean-variance efficient frontier, the portfolio is enhanced by greater robustness.

Using numerical examples, we showed the superiority of our approach over both the
traditional portfolio optimization as well as the probabilistic Sharpe ratio. We presented
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evidence that our approach is effective in mitigating realized volatility without sacrificing
realized returns.
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