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Abstract
This paper addresses a situation wherein a retail investor must liquidate positions in her

portfolio – consisting of assets and European options on those assets – to meet a margin call
and wishes to do so with the least disruption to her portfolio. We address the problem by first
generalizing the usual risk-based haircuts methodology of determining the portfolio margin
requirement given the current positions of a portfolio. We derive first and second-order ana-
lytic estimates for the margin requirements given the positions. Given this generalization, we
determine the liquidation strategy that minimizes the total positions liquidated and meets
the margin requirement. We implement the strategy on example portfolios and show advan-
tages over traditional piece-wise liquidation approaches. The analytic approach outlined here
is more general than the margin context discussed. Our approach is applicable whenever an
investor is attempting to maximize the impact of their capital subject to leverage limits and
so has obviously applications to the hedge fund industry.

1 Background

1.1 Margin Account and Meeting Margin Calls

A margin account is typically opened with a broker and involves a loan from the broker to the
client using securities in the portfolio as collateral. The margin an investor is required to post

∗Director of Research, Office: (703) 539-6764, Email: mailto:GengDeng@slcg.com.
†Senior Financial Economist, Office: (703) 539-6777, Email: mailto:TimDulaney@slcg.com.
‡President, Office: (703) 539-6760, Email: mailto:CraigMcCann@slcg.com.

1

mailto:GengDeng@slcg.com
mailto:TimDulaney@slcg.com
mailto:CraigMcCann@slcg.com


in order to establish a position in a security is called the initial margin. After the position is
established, a generally more lenient requirement – called the maintenance margin – is placed on
the collateralization of the account.

When the market value of the securities in the portfolio fall below the regulatory requirement
for the level of collateralization required to hold the loan, a margin call is issued. The margin
call essentially notifies the investor that their loan is no longer appropriately collateralized and
requires the invester to either deposit additional funds (or securities) into the account or initiates
the partial liquidation of the positions in the portfolio. Liquidation can either proceed through
the direction of the client or at the discretion of the brokerage firm.

Market value fluctuations effect the ability of the securities to adequately collateralize the
brokerage loan. Overly generous loan collateralization guidelines run the risk of investors obtaining
inappropriate levels of leverage in their portfolios.

The portfolio liquidation literature considers the secondary effects of liquidating a portfolio
through large transactions. Lau and Kwok (2000) model the effect of execution time lags and
liquidation discounts when unwinding a position in a risky asset with the objective of maximizing
the terminal value of the cash position in the portfolio. Schnied and Schöneborn (2008) determine,
within a certain liquidity model, the optimal liquidation strategy for increasing absolute risk
aversion investors and decreasing absolute risk aversion investors. Alfonsi et al. (2000) minimize
the expected liquidity costs through the optimal placement of market orders in the liquidation.
Schied et al. (2010) maximize a constant absolute risk aversion investor’s expected utility when
the investor must liquidate a basket of assets within a finite time horizon. For a recent review of
the optimal liquidation literature, see Schöneborn (2011).

This paper adapts some of the powerful results of the trust-region literature to derive the opti-
mal strategy to liquidate a portfolio in order to meet a margin call.1 The problem of determining
the portfolio margin requirement is equivalent to determining the maximum loss a portfolio would
experience within a set of possible scenarios. As a result, the calculation of portfolio margin has
strong connections to trust-region problems wherein one tries to find the extreme value of a func-
tion within a bounded region. This paper relies heavily on the analysis contained within Byrd
et al. (1988). For an introduction to these methods in a more general context with pedagogical
discussions, see Nocedal and Wright (1999).

We explore the optimal strategy to liquidate a portfolio in order to meet a margin call. To
simplify analysis of portfolio liquidation, we assume that the securities in the underlying portfolio
are sufficiently liquid so that we can ignore any possible secondary effects on the market price
of securities from placing market orders. For retail investors with relatively small positions in
their margin accounts, these effects should be small. We consider the more direct problem of
determining the set of securities to liquidate within a portfolio to meet a margin call issued by a
brokerage firm that minimally changes the portfolio.

1By optimal, we mean the liquidation procedure that alters the positions of the original portfolio minimally.
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1.2 History of Margin Requirements

Margin requirements were developed in the Securities Act of 1933, the Banking Act of 1933 and
the Securities Exchange Act of 1934 (Smiley and Keehn, 1988). The Securities Exchange Act
of 1934 gave the Federal Reserve Board the power to “set initial, maintenance, and short sale
margin requirements on all securities traded on a national exchange for purposes of regulating
the securities credit extended by exchange members” (Kupiec, 1997). Regulation T (Reg T)
codified the rules pertaining to the fraction of an exchange-traded security’s current market value
an agent was allowed to lend. Reg T is a rules-based calculation methodology. For example,
to establish a long position in a stock, one currently needs to deposit a minimum of 50% net
equity (1 - loan value/security current market value) according to Reg T requirements.2 Reg T
specifies initial margin requirements and maintenance margin requirements are specified by self-
regulatory organizations (SROs). The downside of rules-based margin calculations is that offsetting
transactions are not considered as a whole. As a result, some risky portfolios have the same margin
requirement as conservative portfolios.

Margin calculations that take into account offsetting transactions within a portfolio are risk-
based. In this approach, the portfolio is stressed in several scenarios wherein the parameters of the
underlying assets (asset price and/or volatility) are varied by prespecified amounts. In general,
larger haircuts are applied to higher risk, less diversified, assets.3 For example, a regulatory body
may have determined that asset price changes of up to 15% and asset volatilities changing by up to
10% are reasonable scenarios to consider for the single day potential profit-and-loss of a portfolio.
Depending on a portfolio’s exposure to the underlying asset, the portfolio could experience a large
loss based upon these parametric fluctuations. As such, the required margin is determined to be
the maximum loss the portfolio could reasonably expect to experience on the next trading day.
One could also view this portfolio margin requirement as the largest value-at-risk for the portfolio
under the scenarios considered.4

The risk-based haircut methodology may be used to calculate capital charges based upon theo-
retical option pricing models.5 The Theoretical Intermarket Margining System (TIMS), developed
by The Options Clearing Corporation (OCC) and approved by the SEC in 2006 following a pilot
program, uses a similar risk-based calculation methodology for determining the portfolio margin
given the positions in a customer’s portfolio.6 TIMS has since been replaced by the System for
Theoretical Analysis and Numerical Simulations (STANs) developed by the OCC utilizing a large-
scale Monte Carlo-based risk management methodology.7 For a complete introduction to portfolio

2Regulation T: Code of Federal Regulations, Title 12, Chapter II, Subchapter A, Part 220.
3A haircut is simply another term used to describe the margin requirement or the maximum expected loss within

a reasonable set of scenarios for a given position.
4Reg T margin accounts are required to have $2,000 net equity in their account whereas portfolio margin accounts

are required to have $100,000 net equity.
5Securities Exchange Act of 1934, Section 15c3-1.
6http://www.theocc.com/risk-management/cpm/
7The system developed by the Chicago Mercantile Exchange in 1988, known as the “Standard Port-
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margining, see (Rosenzweig, 1983). For a comparative analysis of risk-based and rules/strategy-
based margin methodologies as well as a more complete description of the historical evolution
of margin requirements, see Coffman Jr. et al. (2010). For the possible effects of the recent
Dodd-Frank Act on portfolio margin utilization, see Filler (2010).

Example: The risk-based portfolio margin calculation methodology significantly reduces the
required margin in many scenarios. Under the Reg T margin rules, the initial margin requirement
for equities is 50% of market value, and for options 100% of option premium. The following
example portfolio illustrates the margin reduction.8 The put option expires in 90 days and we
assume that Citigroup has a constant, continuously-compounded dividend yield of 1%, that the
risk-free rate is a constant, continuously-compounded, 3% and the implied volatility is 15%.

Reg T Margin Portfolio Margin Margin Reduction
Long 1,000 shares Citigroup
stock @ $30.00

$15,000.00 $4,500.00 $10,500.00

Long 10 shares Citigroup put
$30.00 @ $0.82

$820.00 $807.46 $12.54

Portfolio $15,820.00 $969.89 $14,850.11 (94%)

2 Outline of the Problem

2.1 Preliminary Definitions

Consider a portfolio with initial value V consisting of a set of J equities {Sj| j = 1, 2, · · · , J}
and European options on those equities. We denote the price of the securities in the portfolio by
Pi,j where P1,j denotes the price of equity j and Pi,j represents the price of European option i on
underlying asset j. More explicitly, we define

Pi,j =

{
Sj i = 1

O(Sj, σi, Ki, r, q, Ti, CPi) i > 2
(1)

where {σi, Ki, Ti, CPi} represent the implied volatility, strike price, time to expiration and call-put
indicator for option i respectively. For simplicity and analytic tractibility, we use the Black-Scholes
model for the valuation of the options within the portfolio (Black and Scholes, 1973; Merton, 1976).

folio ANalysis of Risk” (SPAN), is another such a risk-based margin calculation methodology. See:
http://www.cmegroup.com/clearing/risk-management/span-overview.html.

8The scenario that gave rise to the largest loss to the portfolio was one in which the stock price decreased by
15% (largest fluctuation considered) and the implied volatility decreased by 15%.
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In particular, we have

O(S, σ,K, r, q, T, CP ) =

{
C(S, σ,K, r, q, T ) CP = Call

P (S, σ,K, r, q, T ) CP = Put
(2)

and explicit formulas for these functions can be found in Appendix A.
The initial value of the portfolio may then be written as

V =
∑
i,j

Pi,jn
0
i,j

where n0
i,j denote the quantities within the portfolio for each of the underlying securities: n0

i,j < 0
reflects a short position and n0

i,j > 0 reflects a long position.
Consider the situation wherein the investor with the above portfolio is issued a margin call. In

this case, the net liquidation value (NLV) of the portfolio defined by

NLV(n0
i,j) =

∑
i,j

Pi,jn
0
i,j − L

where L is margin loan, has fallen below some specified margin requirement of either the brokerage
house or a regulatory body. As long as the net liquidation value is greater than zero, the require-
ment can be satisfied by liquidating the entire portfolio and decreasing all positions to zero. It
is also generally possible to satisfy the margin requirement by liquidating only a portion of the
portfolio.

2.2 Liquidation Optimization Problem

An optimal strategy to liquidate a portfolio in order to meet a margin call first needs a definition of
the quantity being optimized during the liquidation. One approach to the optimization problem is
simply to minimize transaction costs incurred during the liquidation. Assume the initial portfolio
positions are given by n0

i,j and that the new positions in the portfolio are given by ni,j = n0
i,j −

sign(n0
i,j)∆ni,j, where ∆ni,j ≥ 0. The transaction costs associated with liquidating ∆ni,j from the

initial position n0
i,j can be written generally as fi,j(∆ni,j). In order to minimize transaction costs,

we need to determine
min
∆ni,j

∑
i,j

fi,j(∆ni,j)

such that the margin call is satisfied: NLV(ni,j) ≥ Margin(ni,j). In order to make progress in
this problem, we first make the simplifying assumption that transaction costs are uniform across
securities within the portfolio: fi,j(∆ni,j) = f(∆ni,j). We then assume that transaction costs are
roughly linear dependent on changes in positions: f(∆ni,j) ∝ ∆ni,j.
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The optimization problem we address in this paper is therefore given by

min
∆ni,j

∑
i,j

∆ni,j (3)

subject to the constraints:

NLV(ni,j) ≥ Margin(ni,j), (4)

0 ≤ ∆ni,j ≤ |n0
i,j|, (5)

ni,j = n0
i,j − sign(n0

i,j)∆ni,j. (6)

We leave the study of the efficacy of objective functions different from (3) to future research.
The altered positions ni,j will be different from the starting positions, n0

i,j, of the portfolio,
when the initial margin requirement is breached.9 The changes in position are ∆ni,j = (ni,j −
n0
i,j) · sign(n0

i,j). The constraint in (5) ensures that changes in the positions are not larger than the
initial positions.10 The constraint in (6) serves to prevent positions in the portfolio from increasing
in magnitude. If n0

i,j < 0 – representing a short position in security i with underlying asset j – then
the constraint ensures ni,j ≥ n0

i,j. Similarly, if n0
i,j > 0 – representing a long position in security i

with underlying asset j – then the constraint ensures ni,j ≤ n0
i,j.

The net liquidation value of a portfolio does not change as the positions are changed, so long
as transactions only internally alter the portfolio.11 As a result, the net liquidation value of the
portfolio is independent of positions

NLV(ni,j) = NLV(n0
i,j).

As noted previously, the optimization problem always has at least one feasible solution: the port-
folio is completely liquidated (ni,j = 0 for all securities i and underlying assets j). In this case,
∆ni,j = sign(n0

i,j)n
0
i,j.

2.3 Margin Calculation Optimization Sub-Problem

The primary constraint – Equation (4) – in the liquidation optimization problem requires that the
net equity in the account is larger than the required margin. As explained in the introduction,
when portfolio margin requirements are implemented the broker needs to determine the scenario
in which the portfolio would experience the maximum loss. As a result, the calculation of the

9Therefore, the starting point ∆ni,j = 0 is not a feasible solution.
10In principle, one could imagine a situation wherein a margin requirement is satisfied by changing a short position

to a long position. Since this alteration would presumably change the strategy implemented by the account holder,
we do not consider such portfolio alterations.

11This means that no other securities or cash is deposited. The change in position of one security results in a
change in the cash or the position in another security.
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margin requirement is in itself an optimization problem. This section explores this requirement
and extends the conventional methodology to facilitate an analytically tractible approximation.
The analytically tractible approximations for the margin requirement developed later in the paper
can then be implemented to determine the optimal liquidation in the face of a margin call.

2.3.1 Conventional Discrete Margin Calculation

The calculation of portfolio margin requirements is based upon the “risk-based haircuts” method-
ology wherein the profit and loss of the portfolio is determined within a variety of scenarios. The
scenarios typically involve the underlying assets and/or underlying asset volatilities increasing or
decreasing in value within a reasonable range of their original values.12 For example, a portfolio
consisting of a single short position in a stock would experience the maximum loss (within the
considered scenario range) if the stock increased in value. The maximum loss a portfolio would
incur among a set of scenarios is defined to be the portfolio margin.

When calculating portfolio margin, typically brokerage houses will stress the portfolio in class
groups – securities with the same underlying asset – and then aggregate the maximum losses a
portfolio would experience into the total portfolio margin requirement. This procedure makes
sense intuitively since securities with different underlying assets should move independently of one
another (ignoring correlation effects as a first approximation).

If we let S = {1, 2, . . . , S} be the finite set of scenarios with unique parameter changes ~xj =(
∆Sj

Sj
,

∆σj
σj

)T
. If ~x∗j is defined as the scenario under which the subportfolio incurs the largest loss,

then
~x∗j = arg min

~xk,k∈S
∆Vj(~xk|ni,j) (7)

where the change in value of a subportfolio is given by,

∆Vj(~xj|ni,j) =
∑
i

(Pi,j(~xj)− Pi,j(0))ni,j.

As a result, the portfolio margin requirement is given by

Margin(ni,j) = −
∑
j

∆Vj(~x
∗
j |ni,j) (8)

where ∆Vj(~x|ni,j) is the change in the value of the subportfolio corresponding to asset j, given the
positions ni,j, due to changes in the parameters of the underlying asset given by the vector ~xj.

13

See Figure 1 for an illustration of a discrete set of scenarios considered during the stress-test of a
subportfolio.

12The range of market value fluctuations is approximately 15% for stock baskets and options. A smaller range
of market value fluctuations is required for high-capitalization broad-based indexes such as the S&P 500. Some
brokerage houses consider their own, more volatile, set of scenarios.

13By considering subportfolios rather than individual securities, Argiriou (2009) showed how brokers can set
margin levels to increase revenue from lending more money.
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Figure 1: Scenarios considered in the OCC Risk-Based Haircuts methodology.

A finite set of scenarios is convenient for regulatory bodies and brokerage houses to compute
the portfolio margin. The optimization sub-problem thus defined in (7) is essentially a discrete
optimization over a finite set. For each set of new positions ni,j, calculating the portfolio margin
requirement involves solving x∗j for the optimization sub-problem. This requires one to compute
the portfolio changes ∆Vj a total of S times and to then select the maximum loss. Once x∗j |ni,j
is solved, it is plugged back to the main liquidation optimization problem (3)–(4) to determine
optimal liquidation sizes ∆ni,j. As a result of the discretization, there is no analytical form for
the solution x∗j |ni,j and therefore the portfolio liquidation problem is computationally difficult to
solve.

With infinitesimal changes of positions ni,j, the worst scenario typically stays the same, meaning
there is little change in the solution ~x∗j for the sub-problem. Using this fact, we know that the
margin surface is piecewise linear because the portfolio loss linearly changes with positions.

Example: Consider a simple hypothetical portfolio containing a short straddle. See Figure 2 for
the margin surface. The portfolio is short 1,000 European put options and 1,000 European call
options linked to the same stock, both with strike price $60 and both maturing in 3 months. The
current stock price of the underlying asset is S1 = $60, the risk-free rate for the options is 3%,
the implied volatilities for both options is 15% and the asset’s dividend yield is 1%. Cash held
in the portfolio is $8,000. According to Black-Scholes European option valuation formulas, each
call option costs $1.92 and each put option costs $1.63. The portfolio’s net liquidation value is
therefore $4,444.78. For the stress test, we consider the following six scenarios

x1 ∈ S = {(15%, 0), (−15%, 15%), (−15%,−15%), (15%, 0), (15%, 15%), (15%,−15%)}.
8



At the initial position {n2,1 = −1000, n3,1 = −1000} (Point 1 in the figure), the worst scenario
corresponds to x∗1 = (15%, 15%) – stock price increases 15% and volatility increases 15%.14 The
portfolio margin requirement is $5,922.83, larger than the $4,444.78 net equity held in the account
and a margin call is issued.

We have plotted the portfolio margin requirement surface in Figure 2. As long as ni,1 changes
within a reasonable range, the margin requirement changes linearly with ni,1 – on Plane 1, this
is a result of the fact that the maximum losses correspond to the same risk scenario. When the
positions ni,j change more substantially, the margin surface switches to Plane 2, corresponding to
another scenario ~x∗1 = (−15%, 15%).

Figure 2: Portfolio with a Short Straddle.
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The optimal solution for the main liquidation problem is (∆n2,1,∆n3,1) = (175, 234) corre-
sponding to the positions (n2,1, n3,1) = (−825,−766) or Point 3 in Figure 2. In other words, only
by liquidating more than one security simultaneously will the portfolio margin requirement be
satisfied. The graph shows that by first liquidating call options, the margin will be reduced (from
Point 1 to Point 2). Once the portfolio is liquidated to Point 2, buying put options or call options

14n1,1 = n01,1 = 0 since the portfolio does not contain an investment in the underlying stock.
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individually only serves to increase the margin requirement. The optimal liquidation involves the
simultaneous purchase of call and put options (from Point 2 to Point 3).

2.3.2 Continuous Extension of the Margin Calculation

There are many computational barriers when the sub-optimization involves a discrete set of sce-
narios. One of the main contributions of this paper is to extend the set of scenarios to a continuous
region. This extension is analytically advantageous and allows practioners to apply results from
the trust-region literature. Furthermore, Eldor et al. (2009) argue that increased margin precision
– through the consideration of a larger set of scenarios – promotes greater efficiency of options
trading.

The problem of determining the portfolio margin requirement has strong connections to trust-
region problems wherein one tries to find the extreme value of a function within a bounded region.
The analysis of this section, and indeed this paper, relies heavily on the analysis contained within
(Byrd et al., 1988) and the material contained within (Nocedal and Wright, 1999).

The generalized sub-problem that we consider involves determining the maximum loss a port-
folio would experience if the underlying asset price and underlying asset volatility were altered
in magnitude. In Figure 3, we show the distinction between the two approaches with our new
generalized approach depicted in the right panel.

Figure 3: A continuous generalization of the discrete scenarios considered in the OCC Risk-Based
Haircuts methodology.

The region we consider in our calculation of portfolio margin includes an uncountably infinite
set of scenarios for the underlying asset, volatility combinations. Furthermore, if the radius of
the circle c bounding the set of scenarios is equal to max(|∆S

S
| × |∆σ

σ
|) then the continuous region

contains all of the discrete scenarios of the conventional risk-based haircuts analysis. As a result
of this, the analysis we suggest here will give a more stringent portfolio margin requirement than
the conventional risk-based haircuts analysis.
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Our generalized definition of (8) is given as follows. Let ~xj =
(

∆Sj

Sj
,

∆σj
σj

)T
be constrained such

that ||~xj|| ≤ c for some c > 0, where || · || represents the Euclidean norm.15 The sub-problem
changes to a similar well defined problem with ~x∗j defined by

~x∗j = arg min
||~x||≤c

∆Vj(~x|ni,j). (9)

The generalized portfolio margin requirement (8) with ~x∗j defined in (9).
An important improvement of the new formulation of portfolio margin over the conventional

approach is that the solution constrained within the circle has continuous changes. Any small
variation in the positions ni,j for the main optimization problem results in small changes of optimal
scenario ~x∗j determining the portfolio margin. The changes are continuous but may not be smooth
since the scenario corresponding to the maximum loss may move beyond the feasible region. If
analytical solutions of ~x∗j given ni,j are available, then the portfolio margin can be expressed as a
function of ni,j. We may further take the gradient, or determine the Hessian matrix of the margin
function to facilitate the main liquidation optimization problem.

2.3.3 Alternative Extension of the Margin Calculation

Rather than generalizing the portfolio margin calculation from the discrete set to the continuous
set as in Figure 3, one could choose to consider a box region (||~x||∞ ≤ c) as depicted in Figure 4.
The primary advantage of using this approach is that the portfolio margin estimated using the box

Figure 4: An alternative continuous generalization of the discrete scenarios considered in the OCC
Risk-Based Haircuts methodology.

region is a closer proxy to the result of the discrete set. This is simply due to the fact that there

15Although we assume c is the same number for all equities in the portfolio, generalization to non-uniform
sensitivities – reflecting more or less risky assets – is straight-forward.
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is a larger number of scenarios considered in the circular region and as a result that approach is
more conservative (placing a larger margin requirement).

The sub-optimization problem given the box region is essentially a quadratic programming
problem. After laying out the KKT conditions, the sub-problem is equivilent to solving a 6 dimen-
sional linear programming problem. The sub-problem becomes numerically simple, but analyti-
cally intractible. After we considered the pros and cons of the two approaches, we concluded that
the circular region depicted in Figure 3 is the most convenient generalization of the conventional
discrete portfolio margin calculation.

3 Margin Calculations

Now that we have discussed our continuous extension of the portfolio margin requirement, we now
develop the analytically tractible approximations for the margin requirement.16 These approxima-
tions will then be implemented to determine the optimal liquidation of a portfolio of securities in
the face of a margin call. The solutions to the main liquidation problem using the approximate
margin requirement will have approximately the same objective value to the true solution. Fol-
lowing the risk-management literature, we develop both first-order and second-order estimations.

In Section 3.1, we use the first order expansion of the change in the portfolio value to estimate
the margin requirement. In Section 3.2, we use the second order expansion. The second order
approach provides a better estimation than the first order approach; however, the second order
approximation also turns out to be more computationally involved.

3.1 First Order Margin Estimation

Consider the first-order change in value of the portfolio, ∆V , given by the changes in the underlying
asset values S → S + ∆S = S(1 + RS) and underlying asset implied volatilities σ → σ + ∆σ =
σ(1+Rσ) where we consider scenarios with (∆S

S
)2 +(∆σ

σ
)2 = R2

S +R2
σ ≤ c2 where c is some positive

real number.17 The change in the portfolio value (∆V ) is estimated by the first order change in
the portfolio value given by,

∆Ṽ (~x1, . . . , ~xJ |ni,j) =
∑
j

∆Ṽj(~xj|ni,j) =
∑
j

~gTj ~xj, (10)

where ~gTj = (
∑

iDi,jni,j,
∑

i Vi,jni,j), ~xj =
(

∆Sj

Sj
,

∆σj
σj

)T
and

Di,j =
∂Pi,j
∂Sj

Sj and Vi,j =
∂Pi,j
∂σj

σj.

16Obviously having an exact analytic solution is preferable; however this is almost never possible.
17Portfolio margin calculations based upon the “risk-based haircuts” methodology of the Options Clearing Cor-

poration (OCC) have values of c on the order of 0.05 to 0.15 depending upon the composition of the portfolio.
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The partial derivatives in the equations above are the conventional greeks delta and vega. For a
derivation of the first and second order partial derivatives of option values within the Black-Scholes
model, see Appendix A.

To solve this problem of calculating the margin requirement more completely, we have to
determine for a given set of initial asset positions

min
||~xj ||≤c

∆Ṽj(~xj|ni,j) = min
||~xj ||≤c

~gTj ~xj. (11)

Since the objective function for the sub-problem is a linear function, the solution must be parallel
with −~g (direction of steepest descent) subject to the constraint ||~x∗j || = c in order to maximize
the reduction in portfolio value. Therefore the solution is simply

~x∗j = − c~gj
||~gj||

. (12)

Figure 5 illustrates this analytic solution.

Figure 5: Result of first order minimization of portfolio changes.

Now that we have found the explicit value of ~x∗j , given the holdings {ni,j}, we have found an
approximation of the generalized margin requirement. We can use these results to estimate the
margin requirement as follows

Margin(ni,j) ≈ −∆Ṽ (~x∗1, . . . , ~x
∗
J |ni,j) = c

∑
j

||~gj||. (13)

As a result of this first order margin estimation, we replace the portfolio liquidation constraint in
(4) by the following constraint

NLV(ni,j) ≥ c
∑
j

||~gj||. (14)
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For regions in which the value of the portfolio does not vary substantially, the first order margin
calculation and resulting portfolio liquidation procedure outlined above is efficient and accurate.
To be more precise, as long as the following limit holds∣∣∣∣ ∂2V

∂Xi∂Xj

∣∣∣∣� ∣∣∣∣( ∂V∂Xi

)(
∂V

∂Xj

)∣∣∣∣ (15)

for all {i, j}, where Xi ∈ {σi, Si}, and for all |∆Xi∆Xj| < ε2XiXj for some ε > 0. For portfolios
with values that depend smoothly on the parameter values, there will always be an ε > 0 where this
is the case. In cases where this ε is comparable to the parameter c defining the size of the feasible
region, the first-order analysis should be sufficient to determine the portfolio margin requirement.

In practice, the first-order estimation will not always give an accurate estimate of the margin
requirement; however, in certain special cases, the first order approach is quite accurate. 1) When
there is a large equity component dominating the value of the portfolio. Since the equity itself has
a margin surface that is linear with respect to changes in the characteristics for the asset, the first
order approximation tends to be more accurate. 2) For broadbased indices, the sensitivity tests
are based upon smaller parameter ranges. The smaller range of values for the stress test in this
case will significantly improve the accuracy of the first order expansion.

3.2 Second Order Margin Estimation

The change in value of the portfolio, ∆V , to second order in ~xTj =
(

∆Sj

Sj
,

∆σj
σj

)
is estimated by

∆Ṽ (~x1, . . . , ~xJ |ni,j) =
∑
j

(
~gTj ~xj +

1

2
~xTj Bj~xj

)
, (16)

where ~gj is defined in (10) and the symmetric 2× 2 matrix Bj is defined as follows

Bj =
∑
i

 ∂2Pi,j

∂S2
j
ni,j

∂2Pi,j

∂Sj∂σj
ni,j

∂2Pi,j

∂σj∂Sj
ni,j

∂2Pi,j

∂σ2
j
ni,j

 . (17)

This matrix is the Hessian matrix for the subset of portfolio value changes due to changes in the
characteristics of the underlying asset j. This estimation is more accurate since it includes smaller
effects resulting from the changing characteristics of the underlying asset.

The second order margin estimation is now a quadratic function of the changes in the underlying
assets. The matrix Bj is not necessarily positive-definite.18 Several approximate approaches to

18A real valued n × n matrix A is defined to be positive-definite if ~xTA~x > 0 for all n-dimensional real vectors
~x 6= ~0. Similarly, a real valued n×n matrix A is defined to be positive-semidefinite if ~xTA~x ≥ 0 for all n-dimensional
real vectors ~x 6= ~0.
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estimate the extreme value of the function in (16) within the feasible region falter when the matrix
Bj is not positive-definite. For example, the single dogleg method of (Powell, 1970) and the
modified double dogleg method of (Dennis and Mei, 1979), although powerful, are ill-equipped to
handle the case of an indefinite Hessian.

The following theorem sets up the machinery required to solve the portfolio margin calculation
exactly.19 Although we do not use this exact approach due to its computational complexity, we
include the theorem here as a motivation for the approximate approach that we develop and
advocate.

Theorem 1. The vector ~x∗ is a global solution of the trust-region problem

min
~x∈Rn

(
~gT~x+

1

2
~xTB~x

)
such that ||~x|| ≤ c (18)

if and only if ~x∗ is feasible and there is a scalar λ ≥ 0 such that the following conditions are
satisfied:

(B + λI)~x∗ = −~g, (19)

λ(c− ||~x∗||) = 0, (20)

(B + λI) is positive-semidefinite. (21)

where I is the n× n identity matrix.

Additional pedagogical discussion concerning this theorem and related topics can be found in
Nocedal and Wright (1999).

The theorem is constructive in the sense that the second condition, in (20), requires that either
λ = 0 or that the solution to the problem is on the boundary of the feasible region. Of course if
λ = 0, then the third condition requires B to be positive-semidefinite and the first condition gives
~x∗ = −B−1~g so long as ||~x∗|| ≤ c. If ||~x∗|| = c, then λ is only constrained by the fact that it must
be larger in magnitude than the smallest negative eigenvalue of B. If this condition is satisfied,
then (B + λI) is positive-definite and ~x∗ = −(B + λI)−1~g.

With the optimal criterion specified in Theorem 1, we may combine the main liquidation
problem with the optimization sub-problem. That is, the new combined optimization problem has
the same objective function (3), as well as the non-linear constraints (5) – (4) and (19) – (21).
The solution to the combined problem will satisfy the optimal conditions for the sub-problem as
well as the main problem. This approach is theoretically complete but it is extremely difficult to
solve in practice, even using numerical methods.

We start to solve the sub-optimization problem in an approximate way. First, consider the
case when the matrix B is positive-definite. The approximate procedure that we follow in this

19For a proof of the theorem, see, for example, (Sorensen, 1982).
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paper can be seen as a generalization of the approach found in Powell (1970). In Powell’s approach
(known as the Dogleg Method), the approximate solution to the quadratic problem in (18) is found
by taking a linear combination of the vector corresponding to the direction of the Cauchy point
and the vector corresponding to the direction of the Newton point subject to the condition that
the solution is feasible.20 This approach is only limited by the fact that it requires the matrix B
to be positive-definite.

In Figure 6, we give a graphical depiction of the minimization procedure when the matrix
B is positive definite. The three concentric circles in Figure 6 represent the possible cases for
the size of the feasible region. If the Cauchy point is not within the feasible region, then the
approximate solution to the minimization problem is given by ~x∗ = −c~g/||~g||. If the feasible
region contains the Cauchy point but not the Newton point, then the solution is given by ~x∗(τ) =
−(||~g||2/(~gTB~g))~g − τB−1~g where τ ensures ||~x∗(τ)|| = c. Finally, if the Newton point is within
the feasible region, then ~x∗ = −B−1~g.

Figure 6: Dogleg methodology.

If the matrix B is not positive definite, we cannot apply the dogleg method and instead we
apply the indefinite dogleg algorithm. Since the matrix B is a real symmetric 2 × 2 matrix, we
can apply the spectral theorem of finite dimensional vector spaces to decompose the matrix B as

B = QTΛQ where Λ =

(
λ1 0
0 λ2

)
,

20The Cauchy point is gives the minimum value of the portfolio change in the direction of steepest descent:
−
(
||~g||2/(~gTB~g)

)
~g. The Newton point gives the minimum value of the unconstrained quadratic model (assuming

B is positive-definite): −B−1~g.
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where Q = (~q1, ~q2) is an orthogonal matrix. For sufficiently large λ, the matrix (B + λI) is
positive-definite. If ~x(λ) = −Q(Λ + λI)QT~g, then

~x(λ) = −
(

~qT1 ~g

λ1 + λ
~q1 +

~qT2 ~g

λ2 + λ
~q2

)
.

The norm of the ~x(λ) is given by

||~x(λ)|| =
(

~qT1 ~g

λ1 + λ

)2

+

(
~qT2 ~g

λ2 + λ

)2

due to the orthogonality of the vectors ~q1 and ~q2.
If the matrix B is not positive-definite, then we must alter the above procedure slightly. With-

out loss of generality, we assume λ1 ≤ λ2. We then consider the matrix (B + λI) for some
λ ∈ (−λ1,−2λ1] such that the matrix (B + λI) is positive-definite. In Figure 7, we present
a graphical depiction of the indefinite dogleg methodology. Once again, we have three con-

Figure 7: Indefinite dogleg methodology

centric circles representing the possible cases for the size of the feasible region. If the Cauchy
point of the modified problem is not within the feasible region, then ~x∗ = −c~g/||~g||. If the
Cauchy point is within the region, but the Newton point is not, then the solution is given by
~x∗(τ) = −(||~g||2/(~gT (B + λI)~g)~g − τ(B + λI)−1~g where τ ensures ||~x∗(τ)|| = c.21 Finally, if the

21For an iterative approach of determining the value of τ using Newton’s root finding algorithm, see Appendix B.
This algorithm converges quite quickly in most situations. This method has achieved efficiency in large scale, high
dimensional problems, but functional dependence on the positions is lost when this approach is taken.
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Newton point of the modified problem is within the trust region then ~x∗(ξ) = −(B+λI)−1~g+ ξ~v1

such that ||~x∗(ξ)|| = c.22 The following summarizes the second order algorithm.

Algorithm:

1. If B is positive definite:

(a) If the unconstrained minimizer satisfies || − B−1~g|| ≤ c, then ~x∗ = −B−1~g, otherwise
perform a dogleg search.

(b) If the Cauchy point || − (||~g||2/(~gTB~g)~g|| > c is outside the circle then search along the
steepest decent direction −~g and determine ~x∗ = −c~g/||~g|| on the boundary.

(c) Otherwise look for an interpolation point of the Cauchy point and the unconstrained
minimizer ~x(τ) = −(||~g||2/(~gTB~g)~g − τB−1~g such that ||~x∗(τ)|| = c.

2. If B is not positive definite, find a value λ in (−λ1,−2λ1], such that B + λI is a positive
definite matrix:

(a) If the point −(||~g||2/(~gT (B+λI)~g)~g is outside the circle, then search along the steepest
decent direction −~g and determine ~x∗ = −c~g/||~g|| on the boundary of the region.

(b) If the unconstrained minimizer −(B+λI)−1~g is located inside the circle, ~x∗(ξ) = −(B+
λI)−1~g + ξ~v1 such that ||~x(ξ∗)|| = c

(c) Otherwise determine the interpolation point ~x(τ) = −(||~g||2/(~gT (B + λI)~g)~g − τ(B +
λI)−1~g such that ||~x(τ ∗)|| = c.

This algorithm exhausts all possible cases for the second order portfolio margin estimation.
To implement the algorithm, we determine numerically the case that is appropriate and then pro-
ceed to the corresponding closed form following the algorithm outlined above. This algorithm can
efficiently compute an analytically tractable solution. Since B is a 2 × 2 symmetric matrix, its
eigenvalues λ1 and λ2 and corresponding eigenvectors ~v1 and ~v2 can be computed analytically. Fur-
thermore, the key solution points used in the algorithm, such as the Cauchy point and the Newton
point can be computed analytically because the matrix B is easily inverted.23 The parameters τ
and ξ in the algorithm above are also easily solved in the two-dimensional space.

In each case, we have shown how to determine the value of ~x∗ that minimizes the value of the
subportfolio within the feasible region. We can use these results to estimate the margin requirement
as follows

Margin(ni,j) ≈ −∆V (~x∗1, . . . , ~x
∗
J |ni,j). (22)

22Due to the complexity of this last case in which B is not positive-definite and ||(B + λI)−1~g|| ≤ c, Moré and
Sorensen (1983) refer to this as the “hard case”.

23For the eigenvalue decomposition and the inverse of a general 2× 2 symmetric matrix, see Appendix C.
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As a result of this second order margin estimation, we replace the portfolio liquidation constraint
in (4) with the following constraint

NLV(ni,j) ≥ −∆V (~x∗1, . . . , ~x
∗
J |ni,j). (23)

The availability of approximate analytic solutions ~x∗ has many benefits. For example, by
replacing the form of ~x∗ in the margin function −∆V , we can determine the portfolio margin as
a function of the positions. This allows us to compute the value of margin as well as gradient of
margin with respect to ni,j.

To solve the main liquidation problem, we can use any one of the many standard non-linear
optimization algorithms. For example, we have used the fmincon tool in MATLAB. The tool
implements either a trust-region-reflective algorithm or an active-set algorithm to solve the non-
linear programming problem with non-linear constraints.

4 Example Portfolios

Liquidating a portfolio one security at a time has the disadvantage of not adequately addressing
offsetting positions and, in some cases, can end up leaving the portfolio more exposed to market
value fluctuations than before the liquidation occurred.

4.1 Portfolio 1

The first example is a portfolio containing a long butterfly spread on a stock with current price of
$60. The three call options – all expiring in three months – in the portfolio have different strike
prices and positions:

• Long 500 European call options with strike $55: (n0
2,1 = 500)

• Short 1,000 European call options with strike $60: (n0
3,1 = −1000)

• Long 500 European call options with strike $65: (n0
4,1 = 500)

We assume the three options have the same implied volatility 15%, that the risk-free rate is a
constant, continuously-compounded 3% and that the dividend yield is a constant, continuously-
compounded 1%.

The first method (Figure 9(a)) uses the discrete scenarios based calculations.24 The six sce-
narios are given as before:

~xT ∈ S = {(15%, 0), (−15%, 15%), (−15%,−15%), (15%, 0), (15%, 15%), (15%,−15%)}.
24Since it is not possible to plot the margin surface’s dependence on three independent variables, we supress the

dependence on one independent variable in the figure.
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Figure 8: Graphical depiction of the margin surfaces estimated in three different approaches for
a portfolio that is long a butterfly spread. Since there are 3 variables involved, we only consider
two of them: the x and y axis are based on the long call option (with strike $55) position and the
short call option (with strike $60) position.
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(c) Circle based stress test scenario range
and second order estimation

where ~xT = (∆S/S,∆σ/σ). The margin surface is a combination of linear planes. The second
method (Figure 9(b)) uses the first order estimation. As we can see, because the portfolio does not
have a position in the underlying asset and the range of stock variation is moderate (15%), the first
order estimation does not provide a good estimation. The third method (Figure 9(c)) is the second
order estimation and is much more precise than the first order estimation. One feature about the
second order estimation is that it smooths out the margin surface. The smooth interpolation
between two nearly planar surfaces is a general feature of the second order estimation.

Assuming the portfolio has -$500 in cash, the initial margin estimated by the second order
expansion is $1,742 versus the net liquidation value $505. The solution to this problem is to
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liquidate (∆n2,1,∆n3,1,∆n4,1) = (254, 437, 0) resulting in the final positions (n2,1, n3,1, n4,1) =
(246,−563, 500).25

4.2 Portfolio 2

The second portfolio consists of three options strategies. All option positions are on the same
stock with current price of $60 and with a constant, continuously-compounded dividend yield of
1%. The options have different expiration dates and

• Long collar expiring in two months:

– Long 500 shares of the underlying stock: (n0
1,1 = 500)

– Short 500 European call options with strike $63: (n0
2,1 = −500)

– Long 500 European put options with strike $59: (n0
3,1 = 500)

• Long butterfly spread expiring in three months:

– Long 500 European call options with strike $55: (n0
4,1 = 500)

– Short 1,000 European call options with strike $60: (n0
5,1 = −1000)

– Long 500 European call options with strike $65: (n0
6,1 = 500)

• Long bear call expiring in one month:

– Long 300 European call options with strike $67: (n0
7,1 = 300)

– Short 300 European call options with strike $57: (n0
8,1 = −300)

We use this complex example to primarily test the efficiency of the optimization problem
with/without the gradient information of the contraint (4). Assuming the initial cash amount is
-$30,000, the initial estimated margin is $2,627 and the net liquidation value is $248. Since the net
equity in the account ($248) is less than the margin requirement ($2,627), a margin call is issued.

Using an active-set algorithm in conjunction with the analytic margin approximations presented
in this paper, we obtain the liquidation solution of {∆n1,1 = 59,∆n2,1 = 500,∆n5,1 = 21} and
all other positions liquidated entirely. Without using the gradient information of the margin
constraint, it takes a total 344 function valuations to determine the solution. With the gradient
information from the margin surface, the number of function valuations reduces by approximately
67% to 114.

If a retail investor’s portfolio is not very large, the main optimization problem is still compu-
tationally managable. In that case, we do not have to use the gradient information we computed

25The portfolio contains no investment in the underlying stock and therefore n1,1 = n01,1 = 0.
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from the analytical solutions in Section 3.2. When the portfolio is very large, using gradient in-
formation could save significant computational resources – possibly in excess of 67% as we show
in this example.

5 Discussion

This paper develops the optimal liquidation of a margin account containing equities and European
options on those equities to meet a margin call. We generalized the conventional definition of
portfolio margin requirements by extending the discrete set of scenarios to a continuous, uncount-
ably infinite, set of scenarios. Since this generalization considers a larger set of scenarios, our
approach would necessarily provide a more stringent margin requirement than the conventional
discrete scenario analysis.

Using this generalization, we proposed an algorithm to find approximate analytic expressions
for the margin requirement as a function of the positions in the portfolio. We then implemented a
non-linear programming procedure to satisfy the margin call and minimally alter the underlying
portfolio. The objective function used in this optimization – Equation (3) – can be altered to any
other objective function appropriate for the portfolio management problem being considered. For
example, a hedge fund manager could use the algorithms developed here to implement a strategy
that fixes the β of a portfolio within a specified range.

An important implication of this work is that the margin requirement is rarely satisfied by
liquidating a single security at a time. Often one must liquidate several securities simultaneously
to maximally decrease the required margin while minimally altering the positions in the underlying
portfolio.
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A Option Sensitivities in the Black-Scholes Model

The risk-neutral valuation of European options within the Black-Scholes model is conventional,
but we include the formulas here for convenience and completeness of presentation. Consider
European options with strike price K and expiring T years from now on an underlying asset with
spot price S and volatility σ. Assume the underlying has a constant, continuously-compounded
dividend yield q and take the risk-free rate r to be constant and continuously-compounded. The
Black-Scholes valuation of a European call option with these characteristics is

C(S, σ,K, r, q, T ) = Se−qTN(d+)−Ke−rTN(d−)

and the valuation of a European put option with these characteristics is

P (S, σ,K, r, q, T ) = Ke−rTN(−d−)− Se−qTN(−d+)

where

d± =
ln(S/K) + (r − q ± σ2/2)T

σ
√
T

and N is the standard normal cumulative distribution function.
We need to know how these option valuation formulas depend on the fractional changes in the

asset price S → S(1 + RS) and volatilities σ → σ(1 + Rσ). Using the chain rule, we have the
identities

∂

∂RS

=

(
∂S

∂RS

)
∂

∂S
= S

∂

∂S
and

∂2

∂R2
S

=

(
∂S

∂RS

)2
∂2

∂S2
= S2 ∂

∂S2

∂

∂Rσ

=

(
∂σ

∂Rσ

)
∂

∂σ
= σ

∂

∂σ
and

∂2

∂R2
σ

=

(
∂σ

∂Rσ

)2
∂2

∂σ2
= σ2 ∂

2

∂σ2

The first derivative of the option valuation formulas are given by

∂C

∂RS

= Se−qTN(d+),
∂P

∂RS

= Se−qT (N(d+)− 1),

∂C

∂Rσ

= Se−qTσ
√
TN ′(d+) =

∂P

∂Rσ

.

The second derivative of the option valuation formulas are given by

∂2C

∂R2
S

=
Se−qTN ′(d+)

σ
√
T

=
∂2P

∂R2
S

,

∂2C

∂R2
σ

= Se−qTσ
√
Td+d−N

′(d+) =
∂2P

∂R2
σ

,

∂2C

∂Rσ∂RS

= −Se−qTd−N ′(d+) =
∂2P

∂Rσ∂RS

.
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We use these formulas extensively in evaluating the sensitivity of a portfolio consisting of European
options to fractional changes in underlying asset prices and volatilities.

B Root-Finding Algorithm

If B is positive-definite (λ1 ≥ 0), then either the Newton point – corresponding to the global
minimum of the quadratic function – is within the feasible region (||B−1~g|| ≤ c), in which case
~x∗ = ~x(0), or the Newton point is outside the feasible region ||B−1~g|| ≥ c, in which case there
exists a unique λ = λ∗ such that ||~x(λ∗)|| = c. In this latter case, ~x∗ = ~x(λ∗).

If B is not positive-definite then λ1 ≤ 0. Consider the case in which ~qT1 ~g 6= 0. In this case, one
needs to find a value for λ > λ1 such that ||~x(λ)|| = c. Following Nocedal and Wright (1999), one
can implement a Newton’s root-finding method to iteratively determine the zero of the function,

φ(λ) =
1

c
− 1

||~x(λ)||
.

If B is not positive-definite then λ1 ≤ 0. Consider the case in which ~qT1 ~g = 0. The solution to
the trust-region problem in this case is given by

~x(τ) = −
(

~qT2 ~g

λ2 − λ1

~q2

)
− τ~v1

where v1 is the eigenvector corresponding to λ1, and the real number τ is fixed by the constraint
on the norm of the vector ~x.26 Due to the orthogonal decomposition of B, we have the following
equation for τ ∗

||~x(τ ∗)||2 =

(
~qT2 ~g

λ2 − λ1

)2

+ (τ ∗)2 = c2.

The approximate solution to the trust region problem is therefore ~x∗ = ~x(τ ∗) and can be found by
determining the zero of the function

φ(τ) =
1

c
− 1

||~x(τ)||
.

using Newton’s root-finding method.27

26In other words, ~v1 solves the eigenvector equation (B−λ1I)~v1 = 0. We are assuming, without loss of generality,
that ||~v1|| = 1.

27If ~g is orthogonal to both ~q1 and ~q2, then ~g = 0. For a non-trivial portfolio, our analysis is almost always
complete.
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C Linear Algebra

Consider a real symmetric 2× 2 matrix given by

A =

(
a b
b c

)
.

The eigenvalues and corresponding eigenvectors of this matrix are given by

λ± =

(
a+ c

2

)
±

√(
a− c

2

)2

+ b2 and ~v± =

(
b

λ± − a

)
.

If λ+λ− 6= 0, then the matrix A is invertible with inverse A−1 defined by

A−1 =
1

λ+λ−

(
c −b
−b a

)
.
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