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1 Introduction

Following the seminal work of Roy (1952), Sharpe (1966) suggested a simple metric to compare
investment return distributions.1 The Sharpe ratio (SR) is defined to be the ratio of the average
expected excess return over the risk-free rate (µ) to the standard deviation of the expected excess
returns (σ):

SR =
µ

σ
.

Higher Sharpe ratios indicate more compensation for each unit of investment risk. Of course, µ
and σ are unobservable and must be estimated using historical data.2 Given a sample of historical
returns {R1, R2, . . . , Rn} and a constant risk-free rate Rf , the statistical estimator for the Sharpe
ratio is given by

ŜR =
µ̂

σ̂
where

µ̂ =
1

n

n∑
i=1

(Ri −Rf ) and σ̂2 =
1

n− 1

n∑
i=1

(Ri −Rf − µ̂)2.
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†Senior Financial Economist, Office: (703) 539-6777, Email: mailto:TimDulaney@slcg.com.
‡President, Office: (703) 539-6760, Email: mailto:CraigMcCann@slcg.com.
1For a review of the definitions of the moments of a distribution, see A.
2“Expected excess return” is a bit of a misnomer in the context of historical data. Here we simply mean the

average excess return expected based upon the series of historical returns considered within the sample.
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We provide a detailed discussion of the relationship between the underlying return distribution
and the estimated Sharpe ratio in the next section, but it is important to note the distinction
between the ex-post Sharpe ratio estimated from historical returns and the Sharpe ratio of the
underlying return distribution (which is not observable). If the riskless rate is not constant, then
the appropriate riskless rate in each period should be used to determine the excess returns. The
mean and variance of the sample should then be computed with respect to these excess returns.

The usefulness of the Sharpe ratio is most easily shown through example. Consider two invest-
ments with normal return distributions with mean annual excess return given by µ̂1 = 12% and
µ̂2 = 15%, and standard deviation of excess returns given by σ̂1 = 20% and σ̂2 = 30%. Although
the second investment has higher excess returns on average, the volatility of these returns is also
higher. Computing the Sharpe ratio for these two investments gives: ŜR1 = 0.6 and ŜR2 = 0.5.
Although the first investment has smaller excess returns on average, the first investment compen-
sates investors more for each unit of investment risk.3

The Sharpe ratio assumes that asset returns are independent and identically distributed (IID)
normal variables; however, many assets do not exhibit such distributions. For example, the return
distribution of hedge funds are often negatively skewed and exhibit positive excess kurtosis. Lo
(2002) showed that the positive serial correlation of hedge fund returns leads to an overstatement
of annualized Sharpe ratios.4

2 Sharpe Ratio Distributions

2.1 Independent and Identically Distributed Normal Returns

Independent and identically distributed returns is a common assumption and a simple place to
start with the analysis of the statistical distribution of Sharpe ratios. Assuming that an invest-
ment returns {R1, R2, . . . , Rn} are independent and identically distributed with finite mean µ and
variance σ2, the following relations in the limit

√
n (µ̂− µ) ⇒ N(0, σ2)

√
n
(
σ̂2 − σ2

)
⇒ N(0, 2σ4)

as a result of the Central Limit Theorem.5

These equations imply that the variance in the estimators µ̂ and σ̂2 take the following asymp-
totic forms,

Var (µ̂) =
σ2

n
and Var

(
σ̂2
)

=
2σ4

n
3A careful reader might ask what the probabilty is that the first investment’s return distribution actually posesses

a higher Sharpe ratio than the second and at what significance. We will address such questions later in the text.
4Serial correlation means that the return for the current period is correlated with the return for the previous

period.
5N(µ, σ2) represents the normal distribution with mean µ and variance σ2.
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and therefore the sampling error from these estimators decreases with increasing sample size. Using
Taylor’s theorem, one can show that if g = g(µ, σ2), then

√
n
(
g(µ̂, σ̂2)− g(µ, σ2)

)
⇒ N(0, VIID)

where

VIID = σ2

(
∂g

∂µ

)2

+ 2σ4

(
∂g

∂σ2

)2

.

In particular, if g(µ, σ2) = µ/σ, then

VIID = 1 +
1

2

(µ
σ

)2
.

As a result, the standard deviation in the estimated Sharpe ratio is then given by

σ(ŜR)⇒

√
1

n

(
1 +

1

2
SR2

)
≈

√
1

n− 1

(
1 +

1

2
ŜR

2
)

= σ̂(ŜR).

For example, consider a situation wherein a Sharpe ratio estimated from 10 years of monthly
returns (n = 120) is one (ŜR = 1). At a 95% confidence level, one knows that the population
mean of the Sharpe ratio is within 0.219 of 1. In other words, 0.781 ≤ SR ≤ 1.219 at a 95%
confidence level.

For smaller Sharpe ratios (SR < 1), the majority of the Sharpe ratio estimation error is due
to the uncertainty in the population mean (µ). For larger Sharpe ratios (SR > 2), the majority
of the Sharpe ratio estimation error is due to the uncertainty in the population variance (σ2).

2.2 Non-normal IID Returns

Mertens (2002) shows how the results of the previous section can be generalized to non-normal
return distributions. He considers returns {R1, R2, . . . , Rn} drawn from a distribution with finite
mean µ, variance σ2, skewness γ3 and kurtosis γ4.

6

In particular, we have the following alteration of the distribution of Sharpe ratio estimators

√
n
(
g(µ̂, σ̂2)− g(µ, σ2)

)
⇒ N(0, V )

where

V = 1 +
1

2

(µ
σ

)2
−
(µ
σ

)
γ̂3 +

(µ
σ

)2( γ̂4 − 3

4

)
.

6Opdyke (2007) showed that his expressions are actually applicable under more general assumptions of stationary
and ergodic returns distributions which were independently derived by Christie (2005).
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The standard deviation of the estimated Sharpe ratio is then given by7

σ̂(ŜR) =

√
1

n− 1

(
1 +

1

2
ŜR

2
− ŜRγ̂3 + ŜR

2
(
γ̂4 − 3

4

))
.

For return distributions that exhibit negative skewness (γ̂3 < 0) and positive excess kurtosis
(γ̂4 > 3), the volatility in the estimate of the Sharpe ratio may be much higher than that of a
similar Sharpe ratio assuming a normal return distribution with similar mean and variance.

3 Probabilistic Sharpe Ratio (PSR) and Minimum Track

Record (MTR)

3.1 Definitions

When comparing two Sharpe ratios, one must take into account the estimation errors involved
with each computation. Bailey and de Prado (2011) suggest a measure for the comparison of

an estimated Sharpe ratio (ŜR) to a benchmark Sharpe ratio (SR∗). In particular, they define
the probabilistic Sharpe ratio as the probability that the observed Sharpe ratio is larger than the
benchmark Sharpe ratio. More explicitly,

P̂SR(SR∗) = Prob(ŜR > SR∗) = 1−
∫ SR∗

−∞
Prob(ŜR)dŜR.

Applying the results derived above assuming the return distribution is non-normal, we have

P̂SR(SR∗) = Φ

 (ŜR− SR∗)
√
n− 1√

1 + 1
2
ŜR

2
− ŜRγ̂3 + ŜR

2 ( γ̂4−3
4

)


where Φ is the cumulative distribution function for the standard normal distribution. A P̂SR(SR∗) >
0.95 indicates that the estimated Sharpe ratio is greater than the benchmark Sharpe ratio at a
95% confidence level.

This probabilistic measure used for the comparison of Sharpe ratios is dependent upon the
sample size (n). All else being equal, we require a larger sample size for a return distribution that
exhibits negative skewness and positive excess kurtosis when compared to a normal distribution
to have the same confidence level.

7Although the underlying return distribution is not normal, the distribution of Sharpe ratio estimators follows
a normal distribution.
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Bailey and de Prado (2011) give a measure for the minimum sample size required to accept

the proposition that ŜR > SR∗ at a significance of α%. They define the minimum track record
(MTR) as

MTR = 1 +

[
1 +

1

2
ŜR

2
− ŜRγ̂3 + ŜR

2
(
γ̂4 − 3

4

)](
Zα

ŜR− SR∗

)2

.

As the skewness of the return decreases, or the excess kurtosis increases, the minimum track record
increases.

3.2 Example: Minimum Track Record

The MTR allows an analyst to determine the number of observations of a return distribution that
are required to conclude that the Sharpe ratio estimator is larger than a benchmark at a prespecified
confidence level. As an example, assume that the information in Table 1 describes the distribution
of excess monthly returns of a particular investment. Assume further that we would like to
determine the minimum number of observations required to conclude that the observed Sharpe
ratio is larger than the benchmark Sharpe ratio SR∗ = 0 at a 95% confidence level (Zα = 1.96).

Table 1: Asset parameters

Parameter Asset One
Expected Excess Return 0.62%

Standard Deviation 1.00%

Sharpe Ratio (ŜR) 0.444
Skewness -1.2
Kurtosis 9.4

Sharpe Ratio Standard Error 12.8%

Assuming that the parameters of the historical return distribution (in Table 1) remain relatively
constant across our sample size, we would have to make at least 39 monthly observations to be
confident that the Sharpe ratio of the underlying return distribution was significantly different
from the benchmark SR∗ = 0 at the 95% confidence level.

4 Sharpe Ratio Efficient Frontier

Bailey and de Prado (2011) define a Sharpe Ratio Efficient Frontier (SEF) by taking analogy with
the original mean-variance framework of the seminal work of Markowitz (1952). The authors define
the SEF as the set of portfolios that deliver the highest expected excess return on risk subject to
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the level of uncertainty surrounding those portfolios’ excess return on risk. More explicitly, for a
given level of uncertainty σ∗, the Sharpe ratio efficient frontier is given by

SEF(σ∗) =

{
P
∣∣∣ max
σ̂
ŜR(P )

=σ∗
ŜR(P )

}
.

This approach deals with uncertainty in the model’s input parameters directly. The usual mean-
variance/efficient frontier framework’s sensitivity to input estimates is recognized and incorporated
into the SEF developed by Bailey and de Prado (2011).

In order to understand the usefulness of this SEF in portfolio selection, it is instructive to study
a few examples. We begin with a simple example that involves two uncorrelated assets and move
on to consider an example with three uncorrelated assets.

4.1 Example One: Two Uncorrelated Assets

For the first example, consider two investments with return distributions as listed in Table 2.
Assume that a decade of monthly returns have been observed for each investment (n = 120).

Table 2: Monthly return distribution parameters for a decade of monthly returns

Parameter Asset One Asset Two
Expected Excess Return 0.41% 1.27%

Standard Deviation 1.40% 2.31%

Sharpe Ratio (ŜR) 0.293 0.550
Skewness -1.2 -5.8
Kurtosis 9.4 5.2

Sharpe Ratio Standard Error 11.3% 19.5%

In Figure 1 we have plotted the Sharpe ratio efficient frontier for portfolios that invest only
in asset one and asset two as described in Table 2. We have considered the set of portfolios with
weight w1 = 1− i/1000 in asset one and weight w2 = i/1000 in asset two (i ∈ {0, 1, 2, . . . , 1000}).
We have assumed that the two assets are uncorrelated.

A portfolio that invests only in asset two is not efficient since the Sharpe ratio for such a portfolio
is 0.550 and this is smaller than that of another portfolio with weights {w1 = 30.7%, w2 = 69.3%}
and Sharpe ratio 0.607 (for the same Sharpe ratio standard error, 19.5%). The portfolio that

delivers the highest probabilistic Sharpe ratio is that which maximizes the quantity ŜR/σ̂ŜR. In
this case, this portfolio has weights {w1 = 69.3%, w2 = 30.7%}, Sharpe ratio 0.561 and Sharpe
ratio uncertainty 14.2%. This portfolio is pointed out in Figure 1.
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Figure 1: Sharpe ratio efficient frontier for a portfolio consisting of an investment in
asset one and asset two; The portfolio that delivers the highest probabilistic Sharpe ratio
(indicated with a black arrow)

4.2 Example Two: Three Uncorrelated Assets

For the second example, consider three investments with return distributions as listed in Table
3. Assume once again that a decade of monthly returns have been observed for each investment
(n = 120).

Table 3: Monthly return distribution parameters for a decade of monthly returns

Parameter Asset One Asset Two Asset Three
Expected Excess Return 0.29% 0.86% 1.33%

Standard Deviation 0.97% 2.24% 2.90%

Sharpe Ratio (ŜR) 0.299 0.384 0.459
Skewness -1.2 -5.8 -2.4
Kurtosis 9.4 5.2 3.5

Sharpe Ratio Standard Error 11.4% 16.9% 13.7%

There are a total of 5,151 unique portfolios with weights {w1 = i/100, w2 = j/100, w3 =
1 − (i + j)/100} where {i, j} ∈ {0, 1, 2, . . . , 100}. In Figure 2 we plot the Sharpe ratio for each
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portfolio as a function of the Sharpe ratio standard error. We assume that the three assets are
uncorrelated.

Figure 2: Sharpe ratios of portfolios investing in assets one, two and three as a function
of Sharpe ratio standard error (blue pluses); Sharpe ratio efficient frontier (red squares)

A portfolio that invests only in asset two or asset three is not efficient in this case. Rather
than investing in asset two alone (ŜR = 0.384 and σ̂ŜR = 16.9%), one could invest with portfolio

weights {w1 = 36%, w2 = 42%, w3 = 22%} realizing ŜR = 0.638 with the same Sharpe ratio

standard error (σ̂ŜR = 16.9%). Similarly, rather than investing in asset three alone (ŜR = 0.459
and σ̂ŜR = 13.7%), one could invest with portfolio weights {w1 = 60%, w2 = 17%, w3 = 23%}
realizing ŜR = 0.650 with the same Sharpe ratio standard error (σ̂ŜR = 13.7%).

The portfolio that delivers the highest probabilistic Sharpe ratio has weights {w1 = 61%, w2 =

16%, w3 = 23%} realizing ŜR = 0.646 with standard error σ̂ŜR = 13.6%. This portfolio is pointed
out in Figure 2.

Conventional portfolio theory would suggest that one should choose the portfolio with the
highest Sharpe ratio for a given level of risk. The volatility of expected excess returns of the
portfolio (P ∗) that delivers the highest probabilistic Sharpe ratio is σ̂(P ∗) = 0.96%. For this
level of uncertainty in excess returns, conventional wisdom would have advocated the portfolio
with weights {w1 = 56%, w2 = 24%, w3 = 20%} which has ŜR = 0.661 and σ̂ŜR = 14.5%.
This portfolio is denoted in Figure 2 with a black circle. This marginally higher Sharpe ratio is
significantly less well determined than that of the highest PSR portfolio.
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In Figure 3 we plot the expected excess return as a function of the volatility of excess returns.
We denote the highest PSR portfolio with a black triangle and the highest Sharpe ratio portfolio
for the same level of risk (σ̂ = 0.96%) with a black square.

Figure 3: Expected excess monthly returns as a function of volatility of excess monthly
returns
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A Central Moments

Let z be a random variable with a given distribution and let E[f(z)] represent the average value
of the function f(z) given the distribution. The ith central moment is given by

mi = E[(z − E[z])i].

The average value of z is given by µ = E[z]. One can find simplified expressions for the central
moments using the identity E[E[f(z)]] = f(z). We show how this simplifies the first few central
moments below

E[(z − µ)2] = E[z2]− µ2,

E[(z − µ)3] = E[z3]− 3E[z]2µ+ 2µ3,

E[(z − µ)4] = E[z4]− 4E[z3]µ+ 6E[z2]µ2 − 3µ4.

The standard deviation of a distribution is defined by

σ = E[(z − µ)2]1/2,

the skewness is defined by

γ3 =
E[(z − µ)3]

E[(z − µ)2]3/2
,

and the kurtosis is defined by

γ4 =
E[(z − µ)4]

E[(z − µ)2]2
.
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