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Malliavin Calculus [3, 6], also known as Stochastic
Calculus of Variations, is a useful tool for calculat-
ing sensitivities of financial derivatives to a change
in its underlying parameters, such as Delta, Vega,
and Gamma. In this article, we discuss how to
use Malliavin Calculus to calculate Delta for struc-
tured products.

Introduction

Delta (∆) measures the sensitivity of a structured
product’s market value V to the underlying secu-
rity’s initial price S0. In risk management, Delta
is a useful hedging parameter for controlling the
risk of a portfolio.

If we consider the structured product’s value
as a function of the underlying security’s initial
price, Delta can be calculated using a combina-
tion of simulations and finite difference approxi-
mations [2]. ∆ ∼ V (S0+h)−V (S0−h)

2h , where h is an
infinitesimal change in S0. However, this approach
has two drawbacks. First, there can be a relatively
large estimation error in a simulated V . Second,
the finite difference method has a difficulty han-
dling non-smooth functions, and most structured
products have a non-smooth price function.

Malliavin calculus circumvents these two diffi-
culties by computing the Delta from a different
perspective. Let the value of the structured prod-
uct be V = E[e−(r+C̄)T f ], where f is the product’s
final payoff function, r is the risk-free rate and C̄
is the issuer’s credit default swap spread. Instead
of valuing Delta by taking the derivative as shown
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in Equation (1),

∆ =
∂V

∂S0
= E

[
e−(r+C̄)T ∂f

∂S0

]
, (1)

Malliavin calculus calculates the Delta as

∆ = E
[
e−(r+C̄)T f · weight

]
, (2)

where weight is a random variable called a ‘Malli-
avin weight’. Using the Malliavin formulation, the
Delta can be calculated by simulations without
having to subsequently perturb S0 or use the fi-
nite difference method.

In this article, we show how to use Malliavin
Calculus to calculate Deltas for three structured
product categories: 1) products whose payoffs
depend only on the underlying security’s ending
price f(ST ), 2) products whose payoffs depend on
the underlying security’s average price S̄, f

(
S̄

)
=

f
(

1
T−T0

∫ T
T0

Stdt
)
, and 3) products whose payoffs

depend on the underlying security’s maximum and
minimum prices f

(
maxT

0 St, minT
0 St, ST

)
.

Calculating Delta

We use a risk-neutral framework and assume the
stock price follows a geometric Brownian mo-
tion: dSt = rStdt + σStdWt. Therefore, St =
S0e

(r− 1
2
σ2)t+σWt . Before we describe how to cal-

culate Delta for the structured products we need
to define two functional operators used in Malli-
avin Calculus.

The Operators in Malliavin Calculus
The first operator, D, is the Malliavin derivative

applied to functions of stochastic processes. The
second operator, δ, is an adjoint operator to D and
is called the Skorokhod integral. Like D, δ applies
to functions of stochastic processes. δ is essen-
tially the Itô Integral in the form δ(u) =

∫ T
0 utdWt
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where Wt is a standard Brownian motion. The two
operators satisfy the ‘integration by parts’ formu-
lae, also known as the duality principal

E

[∫ T

0
(DtF )utdt

]
= E[Fδ(u)]. (3)

Furthermore, if we let X and Y be two random
variables, then

E[f ′(X)Y ] = E

[
f(X)δ

(
Y h∫ T

0 h(s)DsXds

)]
(4)

where h(t) can be any random process. By com-
paring Equations (2) and (4), we see that the
Malliavin weight is

weight = δ

(
Y h∫ T

0 h(s)DsXds

)
.

1. Products whose Payoffs Depend on the
Ending Price

We first calculate Deltas for those structured
products whose payoffs depend on the linked se-
curity’s ending price. This is a popular category
containing a broad range of structured products
such as PLUS, Buffered PLUS and principal pro-
tected notes. The payoff function is of the form
f(ST ).

By substituting that functional form into Equa-
tion (1), we get

∆ = E
[
e−(r+C̄)T ∂f(ST )

∂S0

]
= E

[
e−(r+C̄)T f ′(ST )

∂ST

∂S0

]
.

We then use Equation (4), letting X = ST , Y =
∂ST
∂S0

= ST
S0

, and h(s) = 1/T (a constant process).
This allows us to simplify as follows:1

∆ = e−(r+C̄)TE

[
f(ST )δ

(
ST

S0
∫ T
0 DsST ds

)]

= e−(r+C̄)TE
[
f(ST )δ

(
ST

S0σTST

)]
= e−(r+C̄)TE

[
f(ST )

∫ T

0

1
S0σT

dWt

]

= e−(r+C̄)TE
[
f(ST )

WT

S0σT

]
.

1See for example [3, 5] for a more detailed explanation
of the simplification.

Note that the Malliavin weight for this case is:

weight =
WT

S0σT
.

If the payoff function is simple enough, a closed
form-solution for ∆ can actually be calculated by
evaluating the expectation.

2. Products whose Payoffs Depend on the
Average Price

The structured products in this category, in-
cluding MITTS, have payoffs linked to the average
price of the linked security S̄T = 1

T−T0

∫ T
T0

Stdt.
Applying Malliavin calculus to these structured
products is close to calculating Deltas on Asian
options.2 Indeed, it has been proven that the
Malliavin approach is superior to the finite dif-
ference approach in terms of the convergence rate
for Asian options[1].

We again substitute the payoff’s functional form
into Equation (1) and get

∆ = E

[
e−(r+C̄)T ∂f(S̄T )

∂S0

]

= E

[
e−(r+C̄)T f ′(S̄T )

∂S̄T

∂S0

]
.

Using Equation (4), this time letting X = S̄T ,
Y = ∂S̄T

∂S0
= 1

T−T0

∫ T
T0

∂
∂S0

Stdt = 1
T−T0

∫ T
T0

St
S0

dt =
S̄T
S0

, and h(t) = St. After some algebraic simplifi-
cations we obtain:

∆ = e−(r+C̄)TE

[
f(S̄T )δ

(
S̄T St

S0
∫ T
0 SsDsS̄T ds

)]

= e−(r+C̄)TE

[
f(S̄T )

2
S0σ2

(
ST − S0

T S̄T
− r +

σ2

2

)]
.

The Malliavin weight in this case is:

weight =
2

S0σ2

(
ST − S0

T S̄T
− r + σ2/2

)
.

3. Products whose Payoffs Depend on the
Maximum or Minimum Price

This category is also popular, and includes re-
verse convertibles, ELKS, and absolute return
barrier notes. Typically, the payoff function

2Asian options are options whose payoff is determined
by the average price of the underlying security over a pre-
set period of time.
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depends on the linked security’s ending price
as well as its maximum or minimum price,
giving the payoff function the functional form
f (max St, minSt, ST ). The payoff is similar to
that of barrier options or look-back options.

Deriving the Malliavin weight for this category’s
Delta is more complex than for the first two cate-
gories. We take the result directly from [4]:

∆ = e−(r+C̄)TE

[
f (maxXt, minXt, XT )

· δ

(
ZT∫ T

0 Ψ(Yt)dt
Ψ(Y ) +

∂ZT

∂S0

)]
.

A logarithmic transformation needs to be per-
formed on St to obtain Xt. Yt is a dominating
process for Xt, for example, Yt = maxs≤t(Xs −
X0) − mins≤t(Xs − X0). Ψ(·) is a support func-
tion and Zt is process representing a change of
measure along time.

Conclusion

In this article we show how to use Malliavin Calcu-
lus to calculate Deltas for a variety of structured
product categories. Malliavin Calculus is supe-
rior to using a combination of simulations and fi-
nite difference as a method for calculating Delta.
The methods described in this article can be help-
ful to calculate the Delta of a variety of popular
structured products such as PPN, PLUS, Buffered
PLUS, MITTS, reverse convertibles, ELKS, abso-
lute return barrier notes, and many others.
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